WHU-RS19 ABZSL: An Attribute-Based Dataset for Remote Sensing Image Understanding
The advancement of artificial intelligence (AI) in remote sensing (RS) increasingly depends on datasets that offer rich and structured supervision beyond traditional scene-level labels. Although existing benchmarks for aerial scene classification have facilitated progress in this area, their relianc...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/14/2384 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The advancement of artificial intelligence (AI) in remote sensing (RS) increasingly depends on datasets that offer rich and structured supervision beyond traditional scene-level labels. Although existing benchmarks for aerial scene classification have facilitated progress in this area, their reliance on single-class annotations restricts their application to more flexible, interpretable and generalisable learning frameworks. In this study, we introduce WHU-RS19 ABZSL: an attribute-based extension of the widely adopted WHU-RS19 dataset. This new version comprises 1005 high-resolution aerial images across 19 scene categories, each annotated with a vector of 38 features. These cover objects (e.g., roads and trees), geometric patterns (e.g., lines and curves) and dominant colours (e.g., green and blue), and are defined through expert-guided annotation protocols. To demonstrate the value of the dataset, we conduct baseline experiments using deep learning models that had been adapted for multi-label classification—ResNet18, VGG16, InceptionV3, EfficientNet and ViT-B/16—designed to capture the semantic complexity characteristic of real-world aerial scenes. The results, which are measured in terms of macro F1-score, range from 0.7385 for ResNet18 to 0.7608 for EfficientNet-B0. In particular, EfficientNet-B0 and ViT-B/16 are the top performers in terms of the overall macro F1-score and consistency across attributes, while all models show a consistent decline in performance for infrequent or visually ambiguous categories. This confirms that it is feasible to accurately predict semantic attributes in complex scenes. By enriching a standard benchmark with detailed, image-level semantic supervision, WHU-RS19 ABZSL supports a variety of downstream applications, including multi-label classification, explainable AI, semantic retrieval, and attribute-based ZSL. It thus provides a reusable, compact resource for advancing the semantic understanding of remote sensing and multimodal AI. |
|---|---|
| ISSN: | 2072-4292 |