Advanced Sliding Mode Control Strategy for High-Performance 3D Concrete Printing
Concrete-printing robots have become an advanced technology in the construction industry that allows the creation of complex structures, while saving materials and shortening construction time compared to traditional methods. With the structure of a concrete 3D printing robot using a concrete extrud...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Automation |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2673-4052/6/2/22 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Concrete-printing robots have become an advanced technology in the construction industry that allows the creation of complex structures, while saving materials and shortening construction time compared to traditional methods. With the structure of a concrete 3D printing robot using a concrete extruder with a screw, this mechanism provides stable flow of concrete, and less pressure fluctuation. However, using a large mass extruder changes the inertia of the joint and the mass coefficient of the arm when the mass changes, leading to a position error. With the high demands for precision and stability in the operation of 3D concrete printing robots, advanced control methods have become essential to ensure trajectory tracking and robustness in complex real-world environments. This study provides a sliding mode controller with an error and integral, and derivatives are introduced into the sliding surface to improve the stability of the robot without chattering. The controller exhibits fast convergence times and small trajectory tracking errors, at less than 0.1 mm. Simulation results show that this controller is suitable for concrete 3D printing applications, and the controller exhibits fast and good responses to continuously changing extruder mass. This enables the robot to track the expected trajectory with high accuracy. |
|---|---|
| ISSN: | 2673-4052 |