Structure of WzxE the lipid III flippase for Enterobacterial Common Antigen polysaccharide
The enterobacterial common antigen (ECA) is conserved in Gram-negative bacteria of the Enterobacterales order although its function is debated. ECA biogenesis depends on the Wzx/Wzy-dependent strategy whereby the newly synthesized lipid-linked repeat units, lipid III, are transferred across the inne...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The Royal Society
2025-01-01
|
Series: | Open Biology |
Subjects: | |
Online Access: | https://royalsocietypublishing.org/doi/10.1098/rsob.240310 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841526510351024128 |
---|---|
author | Audrey Le Bas Bradley R. Clarke Tanisha Teelucksingh Micah Lee Kamel El Omari Andrew M. Giltrap Stephen A. McMahon Hui Liu John H. Beale Vitaliy Mykhaylyk Ramona Duman Neil G. Paterson Philip N. Ward Peter J. Harrison Miriam Weckener Els Pardon Jan Steyaert Huanting Liu Andrew Quigley Benjamin G. Davis Armin Wagner Chris Whitfield James H. Naismith |
author_facet | Audrey Le Bas Bradley R. Clarke Tanisha Teelucksingh Micah Lee Kamel El Omari Andrew M. Giltrap Stephen A. McMahon Hui Liu John H. Beale Vitaliy Mykhaylyk Ramona Duman Neil G. Paterson Philip N. Ward Peter J. Harrison Miriam Weckener Els Pardon Jan Steyaert Huanting Liu Andrew Quigley Benjamin G. Davis Armin Wagner Chris Whitfield James H. Naismith |
author_sort | Audrey Le Bas |
collection | DOAJ |
description | The enterobacterial common antigen (ECA) is conserved in Gram-negative bacteria of the Enterobacterales order although its function is debated. ECA biogenesis depends on the Wzx/Wzy-dependent strategy whereby the newly synthesized lipid-linked repeat units, lipid III, are transferred across the inner membrane by the lipid III flippase WzxE. WzxE is part of the Wzx family and required in many glycan assembly systems, but an understanding of its molecular mechanism is hindered due to a lack of structural evidence. Here, we present the first X-ray structures of WzxE from Escherichia coli in complex with nanobodies. Both inward- and outward-facing conformations highlight two pairs of arginine residues that move in a reciprocal fashion, enabling flipping. One of the arginine pairs coordinated to a glutamate residue is essential for activity along with the C-terminal arginine rich tail located close to the entrance of the lumen. This work helps understand the translocation mechanism of the Wzx flippase family. |
format | Article |
id | doaj-art-94b46bf40d754479b461ae3ad9de611d |
institution | Kabale University |
issn | 2046-2441 |
language | English |
publishDate | 2025-01-01 |
publisher | The Royal Society |
record_format | Article |
series | Open Biology |
spelling | doaj-art-94b46bf40d754479b461ae3ad9de611d2025-01-16T17:59:34ZengThe Royal SocietyOpen Biology2046-24412025-01-0115110.1098/rsob.240310Structure of WzxE the lipid III flippase for Enterobacterial Common Antigen polysaccharideAudrey Le Bas0Bradley R. Clarke1Tanisha Teelucksingh2Micah Lee3Kamel El Omari4Andrew M. Giltrap5Stephen A. McMahon6Hui Liu7John H. Beale8Vitaliy Mykhaylyk9Ramona Duman10Neil G. Paterson11Philip N. Ward12Peter J. Harrison13Miriam Weckener14Els Pardon15Jan Steyaert16Huanting Liu17Andrew Quigley18Benjamin G. Davis19Armin Wagner20Chris Whitfield21James H. Naismith22Rosalind Franklin Institute, Harwell Campus, Didcot, UKDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, CanadaDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, CanadaDivision of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, UKDiamond Light Source, Harwell Science and Innovation Campus, Didcot, UKRosalind Franklin Institute, Harwell Campus, Didcot, UKBiomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, UKBiomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, UKDiamond Light Source, Harwell Science and Innovation Campus, Didcot, UKDiamond Light Source, Harwell Science and Innovation Campus, Didcot, UKDiamond Light Source, Harwell Science and Innovation Campus, Didcot, UKDiamond Light Source, Harwell Science and Innovation Campus, Didcot, UKRosalind Franklin Institute, Harwell Campus, Didcot, UKMembrane Protein Laboratory, Diamond Light Source, Research Complex at Harwell, Didcot, UKRosalind Franklin Institute, Harwell Campus, Didcot, UKStructural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels B-1050, BelgiumStructural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels B-1050, BelgiumBiomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, UKMembrane Protein Laboratory, Diamond Light Source, Research Complex at Harwell, Didcot, UKRosalind Franklin Institute, Harwell Campus, Didcot, UKDiamond Light Source, Harwell Science and Innovation Campus, Didcot, UKDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, CanadaRosalind Franklin Institute, Harwell Campus, Didcot, UKThe enterobacterial common antigen (ECA) is conserved in Gram-negative bacteria of the Enterobacterales order although its function is debated. ECA biogenesis depends on the Wzx/Wzy-dependent strategy whereby the newly synthesized lipid-linked repeat units, lipid III, are transferred across the inner membrane by the lipid III flippase WzxE. WzxE is part of the Wzx family and required in many glycan assembly systems, but an understanding of its molecular mechanism is hindered due to a lack of structural evidence. Here, we present the first X-ray structures of WzxE from Escherichia coli in complex with nanobodies. Both inward- and outward-facing conformations highlight two pairs of arginine residues that move in a reciprocal fashion, enabling flipping. One of the arginine pairs coordinated to a glutamate residue is essential for activity along with the C-terminal arginine rich tail located close to the entrance of the lumen. This work helps understand the translocation mechanism of the Wzx flippase family.https://royalsocietypublishing.org/doi/10.1098/rsob.240310flippaseoligosaccharideslipid IIIenterobacterial common antigenmembrane proteincell wall |
spellingShingle | Audrey Le Bas Bradley R. Clarke Tanisha Teelucksingh Micah Lee Kamel El Omari Andrew M. Giltrap Stephen A. McMahon Hui Liu John H. Beale Vitaliy Mykhaylyk Ramona Duman Neil G. Paterson Philip N. Ward Peter J. Harrison Miriam Weckener Els Pardon Jan Steyaert Huanting Liu Andrew Quigley Benjamin G. Davis Armin Wagner Chris Whitfield James H. Naismith Structure of WzxE the lipid III flippase for Enterobacterial Common Antigen polysaccharide Open Biology flippase oligosaccharides lipid III enterobacterial common antigen membrane protein cell wall |
title | Structure of WzxE the lipid III flippase for Enterobacterial Common Antigen polysaccharide |
title_full | Structure of WzxE the lipid III flippase for Enterobacterial Common Antigen polysaccharide |
title_fullStr | Structure of WzxE the lipid III flippase for Enterobacterial Common Antigen polysaccharide |
title_full_unstemmed | Structure of WzxE the lipid III flippase for Enterobacterial Common Antigen polysaccharide |
title_short | Structure of WzxE the lipid III flippase for Enterobacterial Common Antigen polysaccharide |
title_sort | structure of wzxe the lipid iii flippase for enterobacterial common antigen polysaccharide |
topic | flippase oligosaccharides lipid III enterobacterial common antigen membrane protein cell wall |
url | https://royalsocietypublishing.org/doi/10.1098/rsob.240310 |
work_keys_str_mv | AT audreylebas structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT bradleyrclarke structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT tanishateelucksingh structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT micahlee structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT kamelelomari structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT andrewmgiltrap structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT stephenamcmahon structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT huiliu structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT johnhbeale structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT vitaliymykhaylyk structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT ramonaduman structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT neilgpaterson structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT philipnward structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT peterjharrison structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT miriamweckener structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT elspardon structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT jansteyaert structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT huantingliu structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT andrewquigley structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT benjamingdavis structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT arminwagner structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT chriswhitfield structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide AT jameshnaismith structureofwzxethelipidiiiflippaseforenterobacterialcommonantigenpolysaccharide |