A note on nonfragmentability of Banach spaces

We use Kenderov-Moors characterization of fragmentability to show that if a compact Hausdorff space X with the tree-completeness property contains a disjoint sequences of clopen sets, then (C(X), weak) is not fragmented by any metric which is stronger than weak topology. In particular, C(X) does not...

Full description

Saved in:
Bibliographic Details
Main Author: S. Alireza Kamel Mirmostafaee
Format: Article
Language:English
Published: Wiley 2001-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171201005075
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832568377320669184
author S. Alireza Kamel Mirmostafaee
author_facet S. Alireza Kamel Mirmostafaee
author_sort S. Alireza Kamel Mirmostafaee
collection DOAJ
description We use Kenderov-Moors characterization of fragmentability to show that if a compact Hausdorff space X with the tree-completeness property contains a disjoint sequences of clopen sets, then (C(X), weak) is not fragmented by any metric which is stronger than weak topology. In particular, C(X) does not admit any equivalent locally uniformly convex renorming.
format Article
id doaj-art-94a31d50542b4ed7a5b97cf545f5bc70
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2001-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-94a31d50542b4ed7a5b97cf545f5bc702025-02-03T00:59:11ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252001-01-01271394410.1155/S0161171201005075A note on nonfragmentability of Banach spacesS. Alireza Kamel Mirmostafaee0Department of Mathematics, Damghan College of Sciences, P.O. Box 364, Damghan 36715, IranWe use Kenderov-Moors characterization of fragmentability to show that if a compact Hausdorff space X with the tree-completeness property contains a disjoint sequences of clopen sets, then (C(X), weak) is not fragmented by any metric which is stronger than weak topology. In particular, C(X) does not admit any equivalent locally uniformly convex renorming.http://dx.doi.org/10.1155/S0161171201005075
spellingShingle S. Alireza Kamel Mirmostafaee
A note on nonfragmentability of Banach spaces
International Journal of Mathematics and Mathematical Sciences
title A note on nonfragmentability of Banach spaces
title_full A note on nonfragmentability of Banach spaces
title_fullStr A note on nonfragmentability of Banach spaces
title_full_unstemmed A note on nonfragmentability of Banach spaces
title_short A note on nonfragmentability of Banach spaces
title_sort note on nonfragmentability of banach spaces
url http://dx.doi.org/10.1155/S0161171201005075
work_keys_str_mv AT salirezakamelmirmostafaee anoteonnonfragmentabilityofbanachspaces
AT salirezakamelmirmostafaee noteonnonfragmentabilityofbanachspaces