Multi-Robot Path Planning for High-Density Parking Environments Considering Efficiency and Fairness
As parking congestion at airport parking lots intensifies, high-density parking (HDP) systems with multiple parking robots are gaining attention for improving operational efficiency. However, conventional multi-agent pathfinding (MAPF) methods primarily focus on overall efficiency improvement, often...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/14/4342 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | As parking congestion at airport parking lots intensifies, high-density parking (HDP) systems with multiple parking robots are gaining attention for improving operational efficiency. However, conventional multi-agent pathfinding (MAPF) methods primarily focus on overall efficiency improvement, often neglecting the priority of individual parking tasks. Additionally, these methods assume robots are ideal agents, resulting in physically infeasible paths for parking robots. We propose a multi-robot path planning approach that balances efficiency and priority. The proposed method improves priority-based search (PBS) by dynamically adjusting priorities, thereby ensuring both operational efficiency and priority of individual vehicles. A simulator replicating a real airport parking environment with 100 parking slots and parking robots under development was implemented to validate the approach. Real-world parking data from an airport was used as input, demonstrating that the proposed autonomous parking system can effectively handle peak-season parking demand. The proposed method achieves a throughput exceeding 41 vehicles per hour with appropriate weight value, meeting the peak-season demand while maintaining acceptable fairness. Our approach provides a practical foundation for establishing time-based parking operation strategies and estimating the number of robots recommended for a given parking scenario. |
|---|---|
| ISSN: | 1424-8220 |