Hysteresis of the Antarctic Ice Sheet With a Coupled Climate‐Ice‐Sheet Model

Abstract The stability of the Antarctic ice sheet under different fixed CO2 levels and orbital configurations is explored using a coupled climate‐ice sheet model, starting from either a pre‐industrial ice sheet or an ice‐free, isostatically rebounded geometry. Simulations reveal a strong hysteresis...

Full description

Saved in:
Bibliographic Details
Main Authors: G. Leloup, A. Quiquet, D. M. Roche, C. Dumas, D. Paillard
Format: Article
Language:English
Published: Wiley 2025-03-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2024GL111492
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849313673738190848
author G. Leloup
A. Quiquet
D. M. Roche
C. Dumas
D. Paillard
author_facet G. Leloup
A. Quiquet
D. M. Roche
C. Dumas
D. Paillard
author_sort G. Leloup
collection DOAJ
description Abstract The stability of the Antarctic ice sheet under different fixed CO2 levels and orbital configurations is explored using a coupled climate‐ice sheet model, starting from either a pre‐industrial ice sheet or an ice‐free, isostatically rebounded geometry. Simulations reveal a strong hysteresis effect: equilibrium ice volumes differ significantly for equivalent CO2 levels, depending on the initial ice sheet geometry. Crucially, the albedo‐melt feedback is accounted for in our coupled setting, resulting in a nonlinear response of the ice sheet to the CO2 forcing. Critical CO2 thresholds trigger either the complete Antarctic ice sheet loss or near‐complete regrowth. The orbital configuration influences these CO2 thresholds. These findings highlight the importance of ice sheet‐atmosphere interactions, notably the albedo‐melt feedback, in projecting future long‐term ice sheet behavior. Neglecting these feedbacks could lead to an overestimation of CO2 thresholds for ice sheet destabilization, with implications for future long‐term sea level rise under high emission scenarios.
format Article
id doaj-art-946191a8f09f4b7cb3fdb06ae057a62d
institution Kabale University
issn 0094-8276
1944-8007
language English
publishDate 2025-03-01
publisher Wiley
record_format Article
series Geophysical Research Letters
spelling doaj-art-946191a8f09f4b7cb3fdb06ae057a62d2025-08-20T03:52:42ZengWileyGeophysical Research Letters0094-82761944-80072025-03-01525n/an/a10.1029/2024GL111492Hysteresis of the Antarctic Ice Sheet With a Coupled Climate‐Ice‐Sheet ModelG. Leloup0A. Quiquet1D. M. Roche2C. Dumas3D. Paillard4Laboratoire des Sciences du Climat et de l’Environnement LSCE/IPSL CEA‐CNRS‐UVSQ Université Paris‐Saclay Gif‐sur‐Yvette FranceLaboratoire des Sciences du Climat et de l’Environnement LSCE/IPSL CEA‐CNRS‐UVSQ Université Paris‐Saclay Gif‐sur‐Yvette FranceLaboratoire des Sciences du Climat et de l’Environnement LSCE/IPSL CEA‐CNRS‐UVSQ Université Paris‐Saclay Gif‐sur‐Yvette FranceLaboratoire des Sciences du Climat et de l’Environnement LSCE/IPSL CEA‐CNRS‐UVSQ Université Paris‐Saclay Gif‐sur‐Yvette FranceLaboratoire des Sciences du Climat et de l’Environnement LSCE/IPSL CEA‐CNRS‐UVSQ Université Paris‐Saclay Gif‐sur‐Yvette FranceAbstract The stability of the Antarctic ice sheet under different fixed CO2 levels and orbital configurations is explored using a coupled climate‐ice sheet model, starting from either a pre‐industrial ice sheet or an ice‐free, isostatically rebounded geometry. Simulations reveal a strong hysteresis effect: equilibrium ice volumes differ significantly for equivalent CO2 levels, depending on the initial ice sheet geometry. Crucially, the albedo‐melt feedback is accounted for in our coupled setting, resulting in a nonlinear response of the ice sheet to the CO2 forcing. Critical CO2 thresholds trigger either the complete Antarctic ice sheet loss or near‐complete regrowth. The orbital configuration influences these CO2 thresholds. These findings highlight the importance of ice sheet‐atmosphere interactions, notably the albedo‐melt feedback, in projecting future long‐term ice sheet behavior. Neglecting these feedbacks could lead to an overestimation of CO2 thresholds for ice sheet destabilization, with implications for future long‐term sea level rise under high emission scenarios.https://doi.org/10.1029/2024GL111492ice sheetclimatefeedbacksalbedomodeling
spellingShingle G. Leloup
A. Quiquet
D. M. Roche
C. Dumas
D. Paillard
Hysteresis of the Antarctic Ice Sheet With a Coupled Climate‐Ice‐Sheet Model
Geophysical Research Letters
ice sheet
climate
feedbacks
albedo
modeling
title Hysteresis of the Antarctic Ice Sheet With a Coupled Climate‐Ice‐Sheet Model
title_full Hysteresis of the Antarctic Ice Sheet With a Coupled Climate‐Ice‐Sheet Model
title_fullStr Hysteresis of the Antarctic Ice Sheet With a Coupled Climate‐Ice‐Sheet Model
title_full_unstemmed Hysteresis of the Antarctic Ice Sheet With a Coupled Climate‐Ice‐Sheet Model
title_short Hysteresis of the Antarctic Ice Sheet With a Coupled Climate‐Ice‐Sheet Model
title_sort hysteresis of the antarctic ice sheet with a coupled climate ice sheet model
topic ice sheet
climate
feedbacks
albedo
modeling
url https://doi.org/10.1029/2024GL111492
work_keys_str_mv AT gleloup hysteresisoftheantarcticicesheetwithacoupledclimateicesheetmodel
AT aquiquet hysteresisoftheantarcticicesheetwithacoupledclimateicesheetmodel
AT dmroche hysteresisoftheantarcticicesheetwithacoupledclimateicesheetmodel
AT cdumas hysteresisoftheantarcticicesheetwithacoupledclimateicesheetmodel
AT dpaillard hysteresisoftheantarcticicesheetwithacoupledclimateicesheetmodel