Revealing the intrinsic connection between residual strain distribution and dissolution mode in Mg-Sc-Y-Ag anode for Mg-air battery
The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process. To further reconcile this contradiction, two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual str...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
KeAi Communications Co., Ltd.
2025-03-01
|
| Series: | Journal of Magnesium and Alloys |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2213956725000234 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process. To further reconcile this contradiction, two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated. The results indicate that annealing can significantly lessen the “pseudo-anode” regions, thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge. Additionally, p-type semiconductor characteristic of discharge product film could suppress the self-corrosion reaction without reducing the polarization of anode. The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity (1388.89 mA h g-1) and energy density (1960.42 mW h g-1). This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries, offering renewable and cost-effective energy solutions for electronics and emergency equipment. |
|---|---|
| ISSN: | 2213-9567 |