Zr‐MOF Carrier‐Enhanced Dual‐Mode Biosensing Platforms for Rapid and Sensitive Diagnosis of Mpox

Abstract Dual‐mode readout platforms with colorimetric and electrochemiluminescence (ECL) signal enhancement are proposed for the ultrasensitive and flexible detection of the monkeypox virus (MPXV) in different scenes. A new nanotag, Ru@U6‐Ru/Pt NPs is constructed for dual‐mode platforms by integrat...

Full description

Saved in:
Bibliographic Details
Main Authors: Huiyi Yang, Judun Zheng, Wei Wang, Jingyan Lin, Jingru Wang, Lunjing Liu, Wenjie Wu, Chengli Zhang, Mingxia Zhang, Yu Fu, Bin Yang, Yuhui Liao
Format: Article
Language:English
Published: Wiley 2024-10-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202405848
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Dual‐mode readout platforms with colorimetric and electrochemiluminescence (ECL) signal enhancement are proposed for the ultrasensitive and flexible detection of the monkeypox virus (MPXV) in different scenes. A new nanotag, Ru@U6‐Ru/Pt NPs is constructed for dual‐mode platforms by integrating double‐layered ECL luminophores and the nanozyme using Zr‐MOF (UiO‐66‐NH2) as the carrier, which not only generates enhanced ECL and colorimetric signals but also provide greater stability than that of commonly used nanotags. Dual‐mode platforms are used within 15 min from the “sample in” to the “result out” steps, without nucleic acid amplification. The colorimetric mode allows the screening of MPXV with the visual limit of detection (vLOD) of 0.1 pM (6 × 108 copies µL−1) and the ECL mode supports quantitative detection of MPXV with an LOD as low as 10 aM (6 copies·µL−1), resulting in a broad sensing range of 60 to 3 × 1011 copies·µL−1 (10 orders of magnitude). Validation is conducted using 50 clinical samples, which is 100% concordant to those of quantitative polymerase chain reaction (qPCR), indicating that Ru@U6‐Ru/Pt NPs‐based dual‐mode sensing platforms showed great promise as rapid, sensitive, and accurate tools for diagnosis of the nucleic acid of MPXV and other infectious pathogens.
ISSN:2198-3844