Epigenetic Regulation of Neutrophils in ARDS
Acute respiratory distress syndrome (ARDS) is an inflammatory pulmonary condition that remains at alarming rates of fatality, with neutrophils playing a vital role in its pathogenesis. Beyond their classical antimicrobial functions, neutrophils contribute to pulmonary injury via the release of react...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Cells |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4409/14/15/1151 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Acute respiratory distress syndrome (ARDS) is an inflammatory pulmonary condition that remains at alarming rates of fatality, with neutrophils playing a vital role in its pathogenesis. Beyond their classical antimicrobial functions, neutrophils contribute to pulmonary injury via the release of reactive oxygen species, proteolytic enzymes, and neutrophil extracellular traps (NETs). To identify targets for treatment, it was found that epigenetic mechanisms, including histone modifications, hypomethylation, hypermethylation, and non-coding RNAs, regulate neutrophil phenotypic plasticity, survival, and inflammatory potential. It has been identified that neutrophils in ARDS patients exhibit abnormal methylation patterns and are associated with altered gene expression and prolonged neutrophil activation, thereby contributing to sustained inflammation. Histone citrullination, particularly via PAD4, facilitates NETosis, while histone acetylation status modulates chromatin accessibility and inflammatory gene expression. MicroRNAs have also been shown to regulate neutrophil activity, with miR-223 and miR-146a potentially being biomarkers and therapeutic targets. Neutrophil heterogeneity, as evidenced by distinct subsets such as low-density neutrophils (LDNs), varies across ARDS etiologies, including COVID-19. Single-cell RNA sequencing analyses, including the use of trajectory analysis, have revealed transcriptionally distinct neutrophil clusters with differential activation states. These studies support the use of epigenetic inhibitors, including PAD4, HDAC, and DNMT modulators, in therapeutic intervention. While the field has been enlightened with new findings, challenges in translational application remain an issue due to species differences, lack of stratification tools, and heterogeneity in ARDS presentation. This review describes how targeting neutrophil epigenetic regulators could help regulate hyperinflammation, making epigenetic modulation a promising area for precision therapeutics in ARDS. |
|---|---|
| ISSN: | 2073-4409 |