Molecular Insights into HPV-Driven Cervical Cancer: Oncoproteins, Immune Evasion, and Epigenetic Modifications

Cervical cancer ranks third in mortality and fourth in incidence among women worldwide as one of the leading causes of death from cancer in females. The main reason behind cervical carcinogenesis is long-term infection with high-risk human papillomavirus (HPV) genotypes, particularly HPV16 and HPV18...

Full description

Saved in:
Bibliographic Details
Main Authors: Luciana Alexandra Pavelescu, Nicoleta Larisa Mititelu-Zafiu, Dana Elena Mindru, Radu Vladareanu, Antoanela Curici
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/13/5/1000
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cervical cancer ranks third in mortality and fourth in incidence among women worldwide as one of the leading causes of death from cancer in females. The main reason behind cervical carcinogenesis is long-term infection with high-risk human papillomavirus (HPV) genotypes, particularly HPV16 and HPV18. This review investigates HPV distribution across the world, along with cervical cancer molecular development mechanisms and current treatment strategies. Epidemiological data show that disease patterns vary significantly between different geographic regions because underdeveloped nations bear a higher disease burden. The molecular mechanisms of oncogenes E6 and E7 disrupt tumor suppressor pathways, while epigenetic modifications through DNA methylation and miRNA dysregulation promote malignant cell transformation. The reduction in HPV infection through prophylactic vaccination has shown promise, yet barriers related to accessibility and coverage still exist. The therapeutic technologies of gene expression inhibitors together with immunotherapies and epigenetic targeting agents show promise but require optimization to achieve specific targeting while minimizing off-target effects. A combined approach that integrates HPV vaccination with early diagnosis and molecular-specific therapies represents the most effective method to manage cervical cancer impact. The future care of patients will require increased translational research along with better immunization programs to drive prevention and therapeutic outcomes.
ISSN:2076-2607