On Strongly 𝝅-regular Modules

In this article, we introduce the notion of strongly π-regular module which is a generalization of von Neumann regular module in the sense [13]. Let A be a commutative ring with 1≠0 and X a multiplication A-module. X is called a strongly π-regular module if for each x∈X, 〖(Ax)〗^m=cX=c^2 X for some c...

Full description

Saved in:
Bibliographic Details
Main Author: Suat Koç
Format: Article
Language:English
Published: Sakarya University 2020-08-01
Series:Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Subjects:
Online Access:https://dergipark.org.tr/tr/download/article-file/1210245
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850133839419015168
author Suat Koç
author_facet Suat Koç
author_sort Suat Koç
collection DOAJ
description In this article, we introduce the notion of strongly π-regular module which is a generalization of von Neumann regular module in the sense [13]. Let A be a commutative ring with 1≠0 and X a multiplication A-module. X is called a strongly π-regular module if for each x∈X, 〖(Ax)〗^m=cX=c^2 X for some c∈A and m∈N. In addition to give many properties and examples of strongly π-regular modules, we also characterize certain class of modules such as von Neumann regular modules and second modules in terms of this new class of modules. Also, we determine when the localization of any family of submodules at a prime ideal commutes with the intersection of this family.
format Article
id doaj-art-93b8426f1e594cb5a2aaebe87a7a2479
institution OA Journals
issn 2147-835X
language English
publishDate 2020-08-01
publisher Sakarya University
record_format Article
series Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi
spelling doaj-art-93b8426f1e594cb5a2aaebe87a7a24792025-08-20T02:31:51ZengSakarya UniversitySakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi2147-835X2020-08-0124467568410.16984/saufenbilder.69636628On Strongly 𝝅-regular ModulesSuat Koç0https://orcid.org/0000-0003-1622-786XMarmara UniversityIn this article, we introduce the notion of strongly π-regular module which is a generalization of von Neumann regular module in the sense [13]. Let A be a commutative ring with 1≠0 and X a multiplication A-module. X is called a strongly π-regular module if for each x∈X, 〖(Ax)〗^m=cX=c^2 X for some c∈A and m∈N. In addition to give many properties and examples of strongly π-regular modules, we also characterize certain class of modules such as von Neumann regular modules and second modules in terms of this new class of modules. Also, we determine when the localization of any family of submodules at a prime ideal commutes with the intersection of this family.https://dergipark.org.tr/tr/download/article-file/1210245von neumann regular module(m n)-closed idealstrongly π-regular modulekrull dimension(∗)-propertylocalization
spellingShingle Suat Koç
On Strongly 𝝅-regular Modules
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi
von neumann regular module
(m n)-closed ideal
strongly π-regular module
krull dimension
(∗)-property
localization
title On Strongly 𝝅-regular Modules
title_full On Strongly 𝝅-regular Modules
title_fullStr On Strongly 𝝅-regular Modules
title_full_unstemmed On Strongly 𝝅-regular Modules
title_short On Strongly 𝝅-regular Modules
title_sort on strongly 𝝅 regular modules
topic von neumann regular module
(m n)-closed ideal
strongly π-regular module
krull dimension
(∗)-property
localization
url https://dergipark.org.tr/tr/download/article-file/1210245
work_keys_str_mv AT suatkoc onstronglyπregularmodules