Proteomics reveals the effects of sustained weight loss on the human plasma proteome

Abstract Sustained weight loss is a preferred intervention in a wide range of metabolic conditions, but the effects on an individual's health state remain ill‐defined. Here, we investigate the plasma proteomes of a cohort of 43 obese individuals that had undergone 8 weeks of 12% body weight los...

Full description

Saved in:
Bibliographic Details
Main Authors: Philipp E Geyer, Nicolai J Wewer Albrechtsen, Stefka Tyanova, Niklas Grassl, Eva W Iepsen, Julie Lundgren, Sten Madsbad, Jens J Holst, Signe S Torekov, Matthias Mann
Format: Article
Language:English
Published: Springer Nature 2016-12-01
Series:Molecular Systems Biology
Subjects:
Online Access:https://doi.org/10.15252/msb.20167357
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Sustained weight loss is a preferred intervention in a wide range of metabolic conditions, but the effects on an individual's health state remain ill‐defined. Here, we investigate the plasma proteomes of a cohort of 43 obese individuals that had undergone 8 weeks of 12% body weight loss followed by a year of weight maintenance. Using mass spectrometry‐based plasma proteome profiling, we measured 1,294 plasma proteomes. Longitudinal monitoring of the cohort revealed individual‐specific protein levels with wide‐ranging effects of losing weight on the plasma proteome reflected in 93 significantly affected proteins. The adipocyte‐secreted SERPINF1 and apolipoprotein APOF1 were most significantly regulated with fold changes of −16% and +37%, respectively (P < 10−13), and the entire apolipoprotein family showed characteristic differential regulation. Clinical laboratory parameters are reflected in the plasma proteome, and eight plasma proteins correlated better with insulin resistance than the known marker adiponectin. Nearly all study participants benefited from weight loss regarding a ten‐protein inflammation panel defined from the proteomics data. We conclude that plasma proteome profiling broadly evaluates and monitors intervention in metabolic diseases.
ISSN:1744-4292