A trace inequality for generalized potentials in Lebesgue spaces with variable exponent

A trace inequality for the generalized Riesz potentials Iα(x) is established in spaces Lp(x) defined on spaces of homogeneous type. The results are new even in the case of Euclidean spaces. As a corollary a criterion for a two-weighted inequality in classical Lebesgue spaces for potentials Iα(x) def...

Full description

Saved in:
Bibliographic Details
Main Authors: David E. Edmunds, Vakhtang Kokilashvili, Alexander Meskhi
Format: Article
Language:English
Published: Wiley 2004-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2004/502312
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849403133621436416
author David E. Edmunds
Vakhtang Kokilashvili
Alexander Meskhi
author_facet David E. Edmunds
Vakhtang Kokilashvili
Alexander Meskhi
author_sort David E. Edmunds
collection DOAJ
description A trace inequality for the generalized Riesz potentials Iα(x) is established in spaces Lp(x) defined on spaces of homogeneous type. The results are new even in the case of Euclidean spaces. As a corollary a criterion for a two-weighted inequality in classical Lebesgue spaces for potentials Iα(x) defined on fractal sets is derived.
format Article
id doaj-art-939394bc13334b8fb88ade754b741014
institution Kabale University
issn 0972-6802
language English
publishDate 2004-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces and Applications
spelling doaj-art-939394bc13334b8fb88ade754b7410142025-08-20T03:37:20ZengWileyJournal of Function Spaces and Applications0972-68022004-01-0121556910.1155/2004/502312A trace inequality for generalized potentials in Lebesgue spaces with variable exponentDavid E. Edmunds0Vakhtang Kokilashvili1Alexander Meskhi2University of Sussex, Centre for Math. Anal. & Appl., Brighton BN1 9QH, Sussex, UKA. Razmadze Mathematical Institute, Georgian Academy of Sciences, 1, M. Aleksidze St, 380093 Tbilisi, GeorgiaA. Razmadze Mathematical Institute, Georgian Academy of Sciences, 1, M. Aleksidze St, 380093 Tbilisi, GeorgiaA trace inequality for the generalized Riesz potentials Iα(x) is established in spaces Lp(x) defined on spaces of homogeneous type. The results are new even in the case of Euclidean spaces. As a corollary a criterion for a two-weighted inequality in classical Lebesgue spaces for potentials Iα(x) defined on fractal sets is derived.http://dx.doi.org/10.1155/2004/502312
spellingShingle David E. Edmunds
Vakhtang Kokilashvili
Alexander Meskhi
A trace inequality for generalized potentials in Lebesgue spaces with variable exponent
Journal of Function Spaces and Applications
title A trace inequality for generalized potentials in Lebesgue spaces with variable exponent
title_full A trace inequality for generalized potentials in Lebesgue spaces with variable exponent
title_fullStr A trace inequality for generalized potentials in Lebesgue spaces with variable exponent
title_full_unstemmed A trace inequality for generalized potentials in Lebesgue spaces with variable exponent
title_short A trace inequality for generalized potentials in Lebesgue spaces with variable exponent
title_sort trace inequality for generalized potentials in lebesgue spaces with variable exponent
url http://dx.doi.org/10.1155/2004/502312
work_keys_str_mv AT davideedmunds atraceinequalityforgeneralizedpotentialsinlebesguespaceswithvariableexponent
AT vakhtangkokilashvili atraceinequalityforgeneralizedpotentialsinlebesguespaceswithvariableexponent
AT alexandermeskhi atraceinequalityforgeneralizedpotentialsinlebesguespaceswithvariableexponent
AT davideedmunds traceinequalityforgeneralizedpotentialsinlebesguespaceswithvariableexponent
AT vakhtangkokilashvili traceinequalityforgeneralizedpotentialsinlebesguespaceswithvariableexponent
AT alexandermeskhi traceinequalityforgeneralizedpotentialsinlebesguespaceswithvariableexponent