Tracer: Taming Anomalous Events with CRFID Tags for Trajectory Management

Mitigating anomalies are crucial for trajectory management in logistics and supply chain systems. Among variant devices for trace detection, computational radio frequency identification (CRFID) tags are promising to draw precise trajectory from the data reported by their accelerometers. However, ful...

Full description

Saved in:
Bibliographic Details
Main Authors: Rui Li, Jinsong Han, Zhi Wang, Jizhong Zhao, Yihong Gong, Xiaobin Zhang
Format: Article
Language:English
Published: Wiley 2013-11-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1155/2013/148353
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mitigating anomalies are crucial for trajectory management in logistics and supply chain systems. Among variant devices for trace detection, computational radio frequency identification (CRFID) tags are promising to draw precise trajectory from the data reported by their accelerometers. However, full coverage of the processing flow using RFID readers is usually cost inefficient, sometimes impractical. In this paper, we propose to employ CRFID tags as tagging devices and develop a working system, Tracer, for precise trajectory detection. Instead of covering the entire processing area, Tracer only deploys RFID readers in essential regions to detect the mishandling, loss, and other abnormal states of items. We design a tree-indexed Markov chain framework, which leverages statistical methods to enable fine-grained and dynamic trajectory management. Results from a preliminarily deployment on a real baggage handling system and trace-driven simulations demonstrate that Tracer is effective to detect the anomalous events with low cost and high accuracy.
ISSN:1550-1477