On-chip integration of achromatic metalens arrays
Abstract Broadband achromatic metalenses and metalens arrays hold promise for enabling high-performance optical imaging in a compact form factor. Conventional visible-light achromatic metalenses are composed of transparent and high-refractive-index TiO2 or GaN nanopillars, but are strongly limited i...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-08-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-62539-7 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Broadband achromatic metalenses and metalens arrays hold promise for enabling high-performance optical imaging in a compact form factor. Conventional visible-light achromatic metalenses are composed of transparent and high-refractive-index TiO2 or GaN nanopillars, but are strongly limited in mainstream silicon-based complementary metal-oxide-semiconductor (CMOS) processes. Herein, we report the realization of high-efficiency Si3N4 achromatic metalenses in the visible range and demonstrate their integration onto a commercial imaging chip. By improving nanofabrication techniques, we have dramatically increased the aspect ratio of Si3N4 nanostructures from ~17 to a high value of 43.33. Consequently, the group delay of the Si3N4 nanostructures is significantly increased and the averaged focusing efficiency of a Si3N4 metalens with a numerical aperture of 0.155 reaches 80.39%. Owing to the CMOS-compatibility of Si3N4, such high-quality metalenses have been integrated with commercial imaging sensors and demonstrated the capability of full-color optical imaging. This research paves a critical step towards chip-integrated meta-devices. |
|---|---|
| ISSN: | 2041-1723 |