EFCNet enhances the efficiency of segmenting clinically significant small medical objects

Abstract Efficient segmentation of small hyperreflective dots, key biomarkers for diseases like macular edema, is critical for diagnosis and treatment monitoring.However, existing models, including Convolutional Neural Networks (CNNs) and Transformers, struggle with these minute structures due to in...

Full description

Saved in:
Bibliographic Details
Main Authors: Lingjie Kong, Qiaoling Wei, Chengming Xu, Xiaofeng Ye, Wei Liu, Min Wang, Yanwei Fu, Han Chen
Format: Article
Language:English
Published: Nature Portfolio 2025-04-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-93171-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Efficient segmentation of small hyperreflective dots, key biomarkers for diseases like macular edema, is critical for diagnosis and treatment monitoring.However, existing models, including Convolutional Neural Networks (CNNs) and Transformers, struggle with these minute structures due to information loss.To address this, we introduce EFCNet, which integrates the Cross-Stage Axial Attention (CSAA) module for enhanced feature fusion and the Multi-Precision Supervision (MPS) module for improved hierarchical guidance. We evaluated EFCNet on two datasets: S-HRD, comprising 313 retinal OCT scans from patients with macular edema, and S-Polyp, a 229-image subset of the publicly available CVC-ClinicDB colonoscopy dataset. EFCNet outperformed state-of-the-art models, achieving average Dice Similarity Coefficient (DSC) gains of 4.88% on S-HRD and 3.49% on S-Polyp, alongside Intersection over Union (IoU) improvements of 3.77% and 3.25%, respectively. Notably, smaller objects benefit most, highlighting EFCNet’s effectiveness where conventional models underperform. Unlike U-Net-Large, which offers marginal gains with increased scale, EFCNet’s superior performance is driven by its novel design. These findings demonstrate its effectiveness and potential utility in clinical practice.
ISSN:2045-2322