On weak solutions of semilinear hyperbolic-parabolic equations

In this paper we prove the existence and uniqueness of weak solutions of the mixed problem for the nonlinear hyperbolic-parabolic equation (K1(x,t)u′)′+K2(x,t)u′+A(t)u+F(u)=f with null Dirichlet boundary conditions and zero initial data, where F(s) is a continuous function such that sF(s)≥0, ∀s∈R a...

Full description

Saved in:
Bibliographic Details
Main Author: Jorge Ferreira
Format: Article
Language:English
Published: Wiley 1996-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171296001044
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we prove the existence and uniqueness of weak solutions of the mixed problem for the nonlinear hyperbolic-parabolic equation (K1(x,t)u′)′+K2(x,t)u′+A(t)u+F(u)=f with null Dirichlet boundary conditions and zero initial data, where F(s) is a continuous function such that sF(s)≥0, ∀s∈R and {A(t);t≥0} is a family of operators of L(H01(Ω);H−1(Ω)). For the existence we apply the Faedo-Galerkin method with an unusual a priori estimate and a result of W. A. Strauss. Uniqueness is proved only for some particular classes of functions F.
ISSN:0161-1712
1687-0425