Temperature Response of the HTR-10 during the Power Ascension Test

The 10 MW High Temperature Gas-Cooled Reactor-Test Module (HTR-10) is the first High Temperature Gas-Cooled Reactor in China. With the objective of raising the reactor power from 30% to 100% rated power, the power ascension test was planned and performed in January 2003. The test results verified th...

Full description

Saved in:
Bibliographic Details
Main Authors: Fubing Chen, Yujie Dong, Zuoyi Zhang
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Science and Technology of Nuclear Installations
Online Access:http://dx.doi.org/10.1155/2015/302648
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The 10 MW High Temperature Gas-Cooled Reactor-Test Module (HTR-10) is the first High Temperature Gas-Cooled Reactor in China. With the objective of raising the reactor power from 30% to 100% rated power, the power ascension test was planned and performed in January 2003. The test results verified the practicability and validity of the HTR-10 power regulation methods. In this study, the power ascension process is preliminarily simulated using the THERMIX code. The code satisfactorily reproduces the reactor transient parameters, including the reactor power, the primary helium pressure, and the primary helium outlet temperature. Reactor internals temperatures are also calculated and compared with the test values recorded by a number of thermocouples. THERMIX correctly simulates the temperature variation tendency for different measuring points, with good to fair agreement between the calculated temperatures and the measured ones. Based on the comparison results, the THERMIX simulation capability for the HTR-10 dynamic characteristics during the power ascension process can be demonstrated. With respect to the reactor safety features, it is of utmost importance that the maximum fuel center temperature during the test process is always much lower than the fuel temperature limit of 1620°C.
ISSN:1687-6075
1687-6083