A Galerkin Finite Element Method for a Nonlocal Parabolic System with Nonlinear Boundary Conditions Arising from the Thermal Explosion Theory

In this paper, we discuss a class of nonlocal parabolic systems with nonlinear boundary conditions arising from the thermal explosion theory. First, we prove the local existence and uniqueness of the classical solution using the Leray–Schauder fixed-point theorem. Then, we analyze three Galerkin app...

Full description

Saved in:
Bibliographic Details
Main Authors: Qipeng Guo, Yu Zhang, Baoqiang Yan
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/5/861
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850031372367822848
author Qipeng Guo
Yu Zhang
Baoqiang Yan
author_facet Qipeng Guo
Yu Zhang
Baoqiang Yan
author_sort Qipeng Guo
collection DOAJ
description In this paper, we discuss a class of nonlocal parabolic systems with nonlinear boundary conditions arising from the thermal explosion theory. First, we prove the local existence and uniqueness of the classical solution using the Leray–Schauder fixed-point theorem. Then, we analyze three Galerkin approximations of the system and derive the optimal-order error estimates: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><msup><mi>h</mi><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula> norm for continuous-time Galerkin approximation, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><msup><mi>h</mi><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><mo>Δ</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula> norm for Crank–Nicolson Galerkin approximation, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><msup><mi>h</mi><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><mo>Δ</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> in both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>1</mn></msup></semantics></math></inline-formula> norms for extrapolated Crank–Nicolson Galerkin approximation.
format Article
id doaj-art-92a99bbea41c445fa1e4588c9f4fb6c7
institution DOAJ
issn 2227-7390
language English
publishDate 2025-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-92a99bbea41c445fa1e4588c9f4fb6c72025-08-20T02:59:00ZengMDPI AGMathematics2227-73902025-03-0113586110.3390/math13050861A Galerkin Finite Element Method for a Nonlocal Parabolic System with Nonlinear Boundary Conditions Arising from the Thermal Explosion TheoryQipeng Guo0Yu Zhang1Baoqiang Yan2School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, ChinaSchool of Mathematics and Statistics, Shandong Normal University, Jinan 250358, ChinaSchool of Mathematics and Statistics, Shandong Normal University, Jinan 250358, ChinaIn this paper, we discuss a class of nonlocal parabolic systems with nonlinear boundary conditions arising from the thermal explosion theory. First, we prove the local existence and uniqueness of the classical solution using the Leray–Schauder fixed-point theorem. Then, we analyze three Galerkin approximations of the system and derive the optimal-order error estimates: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><msup><mi>h</mi><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula> norm for continuous-time Galerkin approximation, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><msup><mi>h</mi><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><mo>Δ</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula> norm for Crank–Nicolson Galerkin approximation, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><msup><mi>h</mi><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><mo>Δ</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> in both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>1</mn></msup></semantics></math></inline-formula> norms for extrapolated Crank–Nicolson Galerkin approximation.https://www.mdpi.com/2227-7390/13/5/861Galerkin finite element methodnonlocal parabolic systemfixed-point theoremnonlinear boundary conditionsuniquenesserror estimate
spellingShingle Qipeng Guo
Yu Zhang
Baoqiang Yan
A Galerkin Finite Element Method for a Nonlocal Parabolic System with Nonlinear Boundary Conditions Arising from the Thermal Explosion Theory
Mathematics
Galerkin finite element method
nonlocal parabolic system
fixed-point theorem
nonlinear boundary conditions
uniqueness
error estimate
title A Galerkin Finite Element Method for a Nonlocal Parabolic System with Nonlinear Boundary Conditions Arising from the Thermal Explosion Theory
title_full A Galerkin Finite Element Method for a Nonlocal Parabolic System with Nonlinear Boundary Conditions Arising from the Thermal Explosion Theory
title_fullStr A Galerkin Finite Element Method for a Nonlocal Parabolic System with Nonlinear Boundary Conditions Arising from the Thermal Explosion Theory
title_full_unstemmed A Galerkin Finite Element Method for a Nonlocal Parabolic System with Nonlinear Boundary Conditions Arising from the Thermal Explosion Theory
title_short A Galerkin Finite Element Method for a Nonlocal Parabolic System with Nonlinear Boundary Conditions Arising from the Thermal Explosion Theory
title_sort galerkin finite element method for a nonlocal parabolic system with nonlinear boundary conditions arising from the thermal explosion theory
topic Galerkin finite element method
nonlocal parabolic system
fixed-point theorem
nonlinear boundary conditions
uniqueness
error estimate
url https://www.mdpi.com/2227-7390/13/5/861
work_keys_str_mv AT qipengguo agalerkinfiniteelementmethodforanonlocalparabolicsystemwithnonlinearboundaryconditionsarisingfromthethermalexplosiontheory
AT yuzhang agalerkinfiniteelementmethodforanonlocalparabolicsystemwithnonlinearboundaryconditionsarisingfromthethermalexplosiontheory
AT baoqiangyan agalerkinfiniteelementmethodforanonlocalparabolicsystemwithnonlinearboundaryconditionsarisingfromthethermalexplosiontheory
AT qipengguo galerkinfiniteelementmethodforanonlocalparabolicsystemwithnonlinearboundaryconditionsarisingfromthethermalexplosiontheory
AT yuzhang galerkinfiniteelementmethodforanonlocalparabolicsystemwithnonlinearboundaryconditionsarisingfromthethermalexplosiontheory
AT baoqiangyan galerkinfiniteelementmethodforanonlocalparabolicsystemwithnonlinearboundaryconditionsarisingfromthethermalexplosiontheory