Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field

Let $G$ be a connected reductive group over a number field $F$, and let $S$ be a set (finite or infinite) of places of $F$. We give a necessary and sufficient condition for the surjectivity of the localization map from $H^1(F,G)$ to the “direct sum” of the sets $H^1(F_v,G)$ where $v$ runs over $S$....

Full description

Saved in:
Bibliographic Details
Main Author: Borovoi, Mikhail
Format: Article
Language:English
Published: Académie des sciences 2023-11-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.455/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206247311278080
author Borovoi, Mikhail
author_facet Borovoi, Mikhail
author_sort Borovoi, Mikhail
collection DOAJ
description Let $G$ be a connected reductive group over a number field $F$, and let $S$ be a set (finite or infinite) of places of $F$. We give a necessary and sufficient condition for the surjectivity of the localization map from $H^1(F,G)$ to the “direct sum” of the sets $H^1(F_v,G)$ where $v$ runs over $S$. In the appendices, we give a new construction of the abelian Galois cohomology of a reductive group over a field of arbitrary characteristic.
format Article
id doaj-art-9273604bf156488cb85406008d62ebbc
institution Kabale University
issn 1778-3569
language English
publishDate 2023-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-9273604bf156488cb85406008d62ebbc2025-02-07T11:10:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-11-01361G91401141410.5802/crmath.45510.5802/crmath.455Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number fieldBorovoi, Mikhail0Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, 6997801 Tel Aviv, IsraelLet $G$ be a connected reductive group over a number field $F$, and let $S$ be a set (finite or infinite) of places of $F$. We give a necessary and sufficient condition for the surjectivity of the localization map from $H^1(F,G)$ to the “direct sum” of the sets $H^1(F_v,G)$ where $v$ runs over $S$. In the appendices, we give a new construction of the abelian Galois cohomology of a reductive group over a field of arbitrary characteristic.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.455/
spellingShingle Borovoi, Mikhail
Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field
Comptes Rendus. Mathématique
title Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field
title_full Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field
title_fullStr Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field
title_full_unstemmed Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field
title_short Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field
title_sort criterion for surjectivity of localization in galois cohomology of a reductive group over a number field
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.455/
work_keys_str_mv AT borovoimikhail criterionforsurjectivityoflocalizationingaloiscohomologyofareductivegroupoveranumberfield