On dual integral equations with Hankel kernel and an arbitrary weight function

In this paper we deal with dual integral equations with an arbitrary weight function and Hankel kernels of distinct and general order. We propose an operational procedure, which depends on exploiting the properties of the Mellin transforms, and readily reduces the dual equations to a single equation...

Full description

Saved in:
Bibliographic Details
Main Author: C. Nasim
Format: Article
Language:English
Published: Wiley 1986-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171286000364
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we deal with dual integral equations with an arbitrary weight function and Hankel kernels of distinct and general order. We propose an operational procedure, which depends on exploiting the properties of the Mellin transforms, and readily reduces the dual equations to a single equation. This then can be inverted by the Hankel inversion to give us an equation of Fredholm type, involving the unknown function. Most of the known results are then derived as special cases of our general result.
ISSN:0161-1712
1687-0425