AI-Powered Vocalization Analysis in Poultry: Systematic Review of Health, Behavior, and Welfare Monitoring

Artificial intelligence and bioacoustics represent a paradigm shift in non-invasive poultry welfare monitoring through advanced vocalization analysis. This comprehensive systematic review critically examines the transformative evolution from traditional acoustic feature extraction—including Mel-Freq...

Full description

Saved in:
Bibliographic Details
Main Authors: Venkatraman Manikandan, Suresh Neethirajan
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/13/4058
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Artificial intelligence and bioacoustics represent a paradigm shift in non-invasive poultry welfare monitoring through advanced vocalization analysis. This comprehensive systematic review critically examines the transformative evolution from traditional acoustic feature extraction—including Mel-Frequency Cepstral Coefficients (MFCCs), spectral entropy, and spectrograms—to cutting-edge deep learning architectures encompassing Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, attention mechanisms, and groundbreaking self-supervised models such as wav2vec2 and Whisper. The investigation reveals compelling evidence for edge computing deployment via TinyML frameworks, addressing critical scalability challenges in commercial poultry environments characterized by acoustic complexity and computational constraints. Advanced applications spanning emotion recognition, disease detection, and behavioral phenotyping demonstrate unprecedented potential for real-time welfare assessment. Through rigorous bibliometric co-occurrence mapping and thematic clustering analysis, this review exposes persistent methodological bottlenecks: dataset standardization deficits, evaluation protocol inconsistencies, and algorithmic interpretability limitations. Critical knowledge gaps emerge in cross-species domain generalization and contextual acoustic adaptation, demanding urgent research prioritization. The findings underscore explainable AI integration as essential for establishing stakeholder trust and regulatory compliance in automated welfare monitoring systems. This synthesis positions acoustic AI as a cornerstone technology enabling ethical, transparent, and scientifically robust precision livestock farming, bridging computational innovation with biological relevance for sustainable poultry production systems. Future research directions emphasize multi-modal sensor integration, standardized evaluation frameworks, and domain-adaptive models capable of generalizing across diverse poultry breeds, housing conditions, and environmental contexts while maintaining interpretability for practical farm deployment.
ISSN:1424-8220