Hand position fields of neurons in the premotor cortex of macaques during natural reaching
Abstract While hippocampus represents spatial information through place cells for body navigation, whether motor areas employ a similar framework to guide hand reaching remains unknown. Here, we investigate tuning properties in dorsal premotor cortex (PMd) during naturalistic reach-and-grasp tasks i...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-04-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-58786-3 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract While hippocampus represents spatial information through place cells for body navigation, whether motor areas employ a similar framework to guide hand reaching remains unknown. Here, we investigate tuning properties in dorsal premotor cortex (PMd) during naturalistic reach-and-grasp tasks in four monkeys. We find that 22% (132/601) of PMd neurons increase firing rates when the monkey’s hand occupies specific positions in space, forming the position fields. These cells represent the hand position highly efficiently, achieving ~80% accuracy for decoding hand trajectories with only 50 most dedicated position tuned cells ( ~ 10% of all recorded neurons). The hand position is co-represented with hand moving direction, speed, and reward location in the same population of PMd neurons, forming a mixed-selective framework to integrate positional and kinematic information. Our findings suggest field-like positional coding may be a mechanism shared across brain regions for spatial representation in goal-directed movements, including body navigation and forelimb reaching. |
|---|---|
| ISSN: | 2041-1723 |