Carrier-free delivery of nucleic acid and photosensitizer nanoparticles for enhanced photodynamic and gene antitumour therapy
Activated anti-oxidation reactions in cells partially diminish the anticancer effect of photodynamic therapy (PDT), significantly hindering efforts to increase the efficacy of PDT. The expression of transcription factor E2 related factor 2 (Nrf2), an important redox-regulated transcription factor, c...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
KeAi Communications Co. Ltd.
2025-07-01
|
| Series: | Fundamental Research |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2667325824001274 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Activated anti-oxidation reactions in cells partially diminish the anticancer effect of photodynamic therapy (PDT), significantly hindering efforts to increase the efficacy of PDT. The expression of transcription factor E2 related factor 2 (Nrf2), an important redox-regulated transcription factor, can be downregulated by Nrf2 siRNA, leading to greatly enhanced PDT effects. However, the efficient co-delivery of photosensitizers and siRNAs remains a key problem because these agents are complex to synthesize, exhibit poor biocompatibility and load drugs with a low efficiency. Herein, we designed a carrier–free and extremely simple strategy to co-deliver a photosensitizer and Nrf2 siRNA to cancer cells. In this nanoplatform, an indocyanine green photosensitizer, siRNA and FeⅡ were self-assembled to form a spherical hybrid structure with a uniform size, high loading ratio and adjustable component ratio. The platform can effectively transfer photosensitizers and siRNAs into cells and effectively inhibit tumour growth in vivo. Overall, the self-assembly approach shows great potential for clinical application and provides a simple method to achieve photodynamic therapy and enhanced photothermal therapy. |
|---|---|
| ISSN: | 2667-3258 |