Observation of heterogeneities in elastocaloric natural/wastes rubber composites
The strain-induced crystallization and elastocaloric properties of various natural rubber (NR)/ground tire rubber (GTR) blends, comprising waste particles of diverse sizes and contents, were investigated. The decreasing inter-distance between particles in conjunction with their increasing content as...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Budapest University of Technology and Economics
2022-12-01
|
| Series: | eXPRESS Polymer Letters |
| Subjects: | |
| Online Access: | http://www.expresspolymlett.com/letolt.php?file=EPL-0012089&mi=cd |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The strain-induced crystallization and elastocaloric properties of various natural rubber (NR)/ground tire rubber (GTR) blends, comprising waste particles of diverse sizes and contents, were investigated. The decreasing inter-distance between particles in conjunction with their increasing content as studied by micro-computed tomography (μCT) as well as the inter-melling between GTR and NR matrix were observed. It resulted in a strain localization in the NR matrix at the GTR and NR interface at the origin of mechanical reinforcement upon tensile deformation. In addition, GTR particles were found to show a nucleating ability on strain-induced crystallization (SIC) and elastocaloric properties independently of the particle size. The strain localization was found to relate to a localization of the temperature field, suggesting localization of the elastocaloric effect in NR/GTR blends. The evidence of such heterogeneities would be of interest for the proper design of elastocaloric waste-based rubber composites for heating/cooling applications. |
|---|---|
| ISSN: | 1788-618X |