Anapc5 and Anapc7 as genetic modifiers of KIF18A function in fertility and mitotic progression

Abstract The kinesin family member 18 A (KIF18A) is an essential regulator of microtubule dynamics and chromosome alignment during mitosis. Functional dependency on KIF18A varies by cell type and genetic context but the heritable factors that influence this dependency remain unknown. To address this...

Full description

Saved in:
Bibliographic Details
Main Authors: Carleigh Nesbit, Whitney Martin, Anne Czechanski, Candice Byers, Narayanan Raghupathy, Ardian Ferraj, Jason Stumpff, Laura Reinholdt
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-025-08766-w
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The kinesin family member 18 A (KIF18A) is an essential regulator of microtubule dynamics and chromosome alignment during mitosis. Functional dependency on KIF18A varies by cell type and genetic context but the heritable factors that influence this dependency remain unknown. To address this, we took advantage of the variable penetrance observed in different mouse strain backgrounds to screen for loci that modulate germ cell depletion in the absence of KIF18A. We found a significant association at a Chr5 locus where anaphase promoting complex subunits 5 (Anapc5) and 7 (Anapc7) were the top candidate genes. We found that both genes were differentially expressed in a sensitive strain background when compared to resistant strain background at key timepoints in gonadal development. We also identified a novel retroviral insertion in Anapc7 that may in part explain the observed expression differences. In cell line models, we found that depletion of KIF18A induced mitotic arrest, which was partially rescued by co-depletion of ANAPC7 (APC7) and exacerbated by co-depletion of ANAPC5 (APC5). These findings suggest that differential expression and activity of Anapc5 and Anapc7 may influence sensitivity to KIF18A depletion in germ cells and CIN cells, with potential implications for optimizing antineoplastic therapies.
ISSN:2045-2322