Activity-induced Near-infrared Spectral Variability at 29P/Schwassmann–Wachmann 1, 2017–2022

29P/Schwassmann–Wachmann 1 (SW1) is both the first-discovered active Centaur and the most outburst-prone comet known. The nature of SW1’s many outbursts, which regularly brighten the comet by 5 mag or more, and what processes power them has been of particular interest since SW1’s discovery in the 19...

Full description

Saved in:
Bibliographic Details
Main Authors: Theodore Kareta, Charles A. Schambeau, Megan Firgard, Yanga R. Fernández
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Planetary Science Journal
Subjects:
Online Access:https://doi.org/10.3847/PSJ/adce07
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:29P/Schwassmann–Wachmann 1 (SW1) is both the first-discovered active Centaur and the most outburst-prone comet known. The nature of SW1’s many outbursts, which regularly brighten the comet by 5 mag or more, and what processes power them has been of particular interest since SW1’s discovery in the 1920s. In this paper, we present and model four epochs of low-resolution near-infrared spectroscopy of SW1 taken with the NASA Infrared Telescope Facility and Lowell Discovery Telescope between 2017 and 2022. This data set includes one large outburst, two periods of low activity (“quiescence” or “quiescent activity”), and one midsized outburst a few days after one of the quiescent observations. The two quiescent epochs appear similar in both spectral slope and modeled grain size distributions, but the two outbursts are significantly different. We propose that the two can be reconciled if smaller dust grains are accelerated more than larger ones, such that observations closer to the onset of an outburst are more sensitive to the finer-grained dust on the outside of the expanding cloud of material. These outbursts can thus appear very rapid, but there is still a period where the dust and gas are well coupled. We find no strong evidence of water-ice absorption features in any of our spectra, suggesting that the areal abundance of ice-dominated grains is less than 1%. We conclude with a discussion of future modeling and monitoring efforts that might be able to further advance our understanding of this object’s complicated activity patterns.
ISSN:2632-3338