Stability Analysis of SEIAR Model with Age Structure Under Media Effect

In this paper, we establish an age-structured SEIAR epidemic model that incorporates media effects and employ the exponential function approach to demonstrate the crucial role of media influence in disease prevention and control. Notably, our model accounts for the possibility of recessive infected...

Full description

Saved in:
Bibliographic Details
Main Authors: Hongliang Gao, Fanli Zhang, Jiemei Li
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/6/412
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we establish an age-structured SEIAR epidemic model that incorporates media effects and employ the exponential function approach to demonstrate the crucial role of media influence in disease prevention and control. Notably, our model accounts for the possibility of recessive infected individuals becoming dominant through contact with infectious individuals. Theoretical analysis yields the explicit expression for the basic reproduction number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>0</mn></msub></semantics></math></inline-formula>, which serves as a critical threshold for disease dynamics. Through comprehensive threshold analysis, we investigate the existence and stability of both disease-free and endemic equilibrium states. By applying characteristic equation analysis and the method of characteristics, we establish the following: (1) when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>0</mn></msub><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>, the disease-free equilibrium is globally asymptotically stable; (2) when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>0</mn></msub><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, a unique endemic equilibrium exists and maintains local asymptotic stability under specific conditions. This study shows that strengthening media promotion, raising awareness, and reducing the density of recessive infected individuals can effectively control the further spread of a disease. To validate our theoretical results, we present numerical simulations that quantitatively assess the impact of varying media reporting intensities on epidemic containment measures. These simulations provide practical insights for public health intervention strategies.
ISSN:2075-1680