Post sleeve gastrectomy-enriched gut commensal Clostridia promotes secondary bile acid increase and weight loss
The gut microbiome is altered after bariatric surgery and is associated with weight loss. However, the commensal bacteria involved and the underlying mechanism remain to be determined. We performed shotgun metagenomic sequencing in obese subjects before and longitudinally after sleeve gastrectomy (S...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2025-12-01
|
Series: | Gut Microbes |
Subjects: | |
Online Access: | https://www.tandfonline.com/doi/10.1080/19490976.2025.2462261 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The gut microbiome is altered after bariatric surgery and is associated with weight loss. However, the commensal bacteria involved and the underlying mechanism remain to be determined. We performed shotgun metagenomic sequencing in obese subjects before and longitudinally after sleeve gastrectomy (SG), and found a significant enrichment in microbial species in Clostridia and bile acid metabolizing genes after SG treatment. Bile acid profiling further revealed decreased primary bile acids (PBAs) and increased conjugated secondary bile acids (C-SBAs) after SG. Specifically, glycodeoxycholic acid (GDCA) and taurodeoxycholic acid (TDCA) were increased at different follow-ups after SG, and were associated with the increased abundance of Clostridia and body weight reduction. Fecal microbiome transplantation with post-SG feces increased SBA levels, and alleviated body weight gain in the recipient mice. Furthermore, both Clostridia-enriched spore-forming bacteria and GDCA supplementation increased the expression of genes responsible for lipolysis and fatty acid oxidation in adipose tissue and reduced adiposity via Takeda G-protein-coupled receptor 5 (TGR5) signaling. Our findings reveal post-SG gut microbiome and C-SBAs as contributory to SG-induced weight loss, in part via TGR5 signaling, and suggest SBA-producing gut microbes as a potential therapeutic target for obesity intervention. |
---|---|
ISSN: | 1949-0976 1949-0984 |