A characterization of open mapping in terms of convergent sequences

It is certainly well known that a mapping between metric spaces is continuous if and only if it preserves convergent sequences. Does there exist a comparable characterization for the mapping to be open? Of course, the inverse mapping is set-valued, in general. In this research/expository note, we sh...

Full description

Saved in:
Bibliographic Details
Main Author: Irwin E. Schochetman
Format: Article
Language:English
Published: Wiley 2006-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS/2006/76162
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is certainly well known that a mapping between metric spaces is continuous if and only if it preserves convergent sequences. Does there exist a comparable characterization for the mapping to be open? Of course, the inverse mapping is set-valued, in general. In this research/expository note, we show that a mapping is open if and only if the set-valued inverse mapping preserves convergent sequences in an appropriate set-theoretic sense.
ISSN:0161-1712
1687-0425