Equiaffine immersions of codimension two with flat connection and one-dimensional Weingarten mapping

In the paper we study equiaffine immersions $f\colon (M^n,\nabla) \rightarrow {\mathbb{R}}^{n+2}$ with flat connection $\nabla$ and one-dimensional Weingarten mapping. For such immersions there are two types of the transversal distribution equiaffine frame. We give a parametrization of a submanifold...

Full description

Saved in:
Bibliographic Details
Main Author: O. O. Shugailo
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2023-09-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/297
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850095286181953536
author O. O. Shugailo
author_facet O. O. Shugailo
author_sort O. O. Shugailo
collection DOAJ
description In the paper we study equiaffine immersions $f\colon (M^n,\nabla) \rightarrow {\mathbb{R}}^{n+2}$ with flat connection $\nabla$ and one-dimensional Weingarten mapping. For such immersions there are two types of the transversal distribution equiaffine frame. We give a parametrization of a submanifold with the given properties for both types of equiaffine frame. The main result of the paper is contained in Theorems 1, 2 and Corollary 1: Let $f\colon ({M}^n,\nabla)\rightarrow ({\mathbb{R}}^{n+2},D)$ be an affine immersion with pointwise codimension 2, equiaffine structure, flat connection $\nabla$, one-dimensional Weingarten mapping then there exists three types of its parametrization: $(i)$ $\vec{r}=g(u^1,\ldots,u^n) \vec{a}_1+\int \vec{\varphi}(u^1)du^1+\sum\limits_{i=2}^n u^i\vec{a}_i;$ $(ii)$  $\vec{r}=(g(u^2,\ldots,u^n)+u^1)\vec{a}+\int v(u^1) \vec{\eta}(u^1)du^1+\sum\limits_{i=2}^n u^i\int\lambda_i(u^1)\vec{\eta}(u^1)du^1;$ $(iii)$ $\vec{r}=(g(u^2,\ldots,u^n)+u^1)\vec{\rho}(u^1)+\int (v(u^1) - u^1) \dfrac{d \vec{\rho}(u^1)}{d u^1}du^1+\sum\limits_{i=2}^n u^i\int\lambda_i(u^1)\dfrac{d \vec{\rho}(u^1)}{d u^1}du^1.$
format Article
id doaj-art-917e7690a77046098c466c625fae89e1
institution DOAJ
issn 1027-4634
2411-0620
language deu
publishDate 2023-09-01
publisher Ivan Franko National University of Lviv
record_format Article
series Математичні Студії
spelling doaj-art-917e7690a77046098c466c625fae89e12025-08-20T02:41:29ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342411-06202023-09-016019911210.30970/ms.60.1.99-112297Equiaffine immersions of codimension two with flat connection and one-dimensional Weingarten mappingO. O. Shugailo0School of Mathematics and Computer Sciences V.N. Karazin Kharkiv National University Kharkiv, UkraineIn the paper we study equiaffine immersions $f\colon (M^n,\nabla) \rightarrow {\mathbb{R}}^{n+2}$ with flat connection $\nabla$ and one-dimensional Weingarten mapping. For such immersions there are two types of the transversal distribution equiaffine frame. We give a parametrization of a submanifold with the given properties for both types of equiaffine frame. The main result of the paper is contained in Theorems 1, 2 and Corollary 1: Let $f\colon ({M}^n,\nabla)\rightarrow ({\mathbb{R}}^{n+2},D)$ be an affine immersion with pointwise codimension 2, equiaffine structure, flat connection $\nabla$, one-dimensional Weingarten mapping then there exists three types of its parametrization: $(i)$ $\vec{r}=g(u^1,\ldots,u^n) \vec{a}_1+\int \vec{\varphi}(u^1)du^1+\sum\limits_{i=2}^n u^i\vec{a}_i;$ $(ii)$  $\vec{r}=(g(u^2,\ldots,u^n)+u^1)\vec{a}+\int v(u^1) \vec{\eta}(u^1)du^1+\sum\limits_{i=2}^n u^i\int\lambda_i(u^1)\vec{\eta}(u^1)du^1;$ $(iii)$ $\vec{r}=(g(u^2,\ldots,u^n)+u^1)\vec{\rho}(u^1)+\int (v(u^1) - u^1) \dfrac{d \vec{\rho}(u^1)}{d u^1}du^1+\sum\limits_{i=2}^n u^i\int\lambda_i(u^1)\dfrac{d \vec{\rho}(u^1)}{d u^1}du^1.$http://matstud.org.ua/ojs/index.php/matstud/article/view/297affine immersion; flat connection; equiaffine structure; weingarten mapping
spellingShingle O. O. Shugailo
Equiaffine immersions of codimension two with flat connection and one-dimensional Weingarten mapping
Математичні Студії
affine immersion; flat connection; equiaffine structure; weingarten mapping
title Equiaffine immersions of codimension two with flat connection and one-dimensional Weingarten mapping
title_full Equiaffine immersions of codimension two with flat connection and one-dimensional Weingarten mapping
title_fullStr Equiaffine immersions of codimension two with flat connection and one-dimensional Weingarten mapping
title_full_unstemmed Equiaffine immersions of codimension two with flat connection and one-dimensional Weingarten mapping
title_short Equiaffine immersions of codimension two with flat connection and one-dimensional Weingarten mapping
title_sort equiaffine immersions of codimension two with flat connection and one dimensional weingarten mapping
topic affine immersion; flat connection; equiaffine structure; weingarten mapping
url http://matstud.org.ua/ojs/index.php/matstud/article/view/297
work_keys_str_mv AT ooshugailo equiaffineimmersionsofcodimensiontwowithflatconnectionandonedimensionalweingartenmapping