Effectiveness of River Training Projects in Controlling Shoal Erosion: A Case Study of the Middle Yangtze River
Reservoir regulation and river training works are significant factors influencing downstream channel evolution. However, there is still a lack of systematic studies on the evolution patterns under their synergistic impacts. In particular, the adaptability of shoal training works under hydrological v...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Hydrology |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2306-5338/12/6/148 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Reservoir regulation and river training works are significant factors influencing downstream channel evolution. However, there is still a lack of systematic studies on the evolution patterns under their synergistic impacts. In particular, the adaptability of shoal training works under hydrological variability conditions needs further investigation. The main purpose of this study is to undertake a thorough analysis of the efficacy of river training works related to shoal erosion control and to identify its underlying causes and potential mitigation strategies. By reviewing completed river training works and collecting and analyzing hydrological data of the middle Yangtze River, we developed and applied a hydro-morphological model to simulate the river evolution processes. A systematic evaluation was undertaken on the impact of training works on shoal erosion. The results indicate that the river training works can influence local hydrological and hydrodynamic conditions, thereby enhancing shoals’ resistance to erosion and decelerating shoal shrinkage. However, under altered hydrologic regimes, the effectiveness of training works wanes, thus failing to fully achieve its intended effects. Specifically, the bank protection project attenuated the intensity of scour at the head of the continent by 30% (average annual scour depth reduced from 2.1 m to 1.5 m) and increased the local stability index by 14.5% (from 0.744 to 0.852), but it is still below the critical threshold (1.024). The findings of this study are expected to provide a scientific basis for the planning and implementation of river training works in the Middle Yangtze River and serve as a reference for addressing similar issues in other regions. |
|---|---|
| ISSN: | 2306-5338 |