Spatiotemporal Analysis of Atmospheric Chemical Potential Anomalies Associated with Major Seismic Events (Ms ≥ 7) in Western China: A Multi-Case Study

Focusing on major earthquakes (EQs; MS ≥ 7) in Western China, this study primarily analyzes the fluctuation in Atmospheric Chemical Potential (ACP) before and after the Wenchuan, Yushu, Lushan, Jiuzhaigou, and Maduo EQs via Climatological Analysis of Seismic Precursors Identification (CAPRI). The di...

Full description

Saved in:
Bibliographic Details
Main Authors: Qijun Jiao, Qinqin Liu, Changgui Lin, Feng Jing, Jiajun Li, Yuxiang Tian, Zhenxia Zhang, Xuhui Shen
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/2/311
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Focusing on major earthquakes (EQs; MS ≥ 7) in Western China, this study primarily analyzes the fluctuation in Atmospheric Chemical Potential (ACP) before and after the Wenchuan, Yushu, Lushan, Jiuzhaigou, and Maduo EQs via Climatological Analysis of Seismic Precursors Identification (CAPRI). The distribution of vertical ACP revealed distinct altitude-dependent characteristics. The ACP at lower atmospheric layers (100–2000 m) exhibited a high correlation, and this correlation decreased with increasing altitude. Anomalies were detected within one month prior to each of the five EQs studied, with the majority occurring 14 to 30 days before the events, followed by a few additional anomalies. The spatial distribution of anomalies is consistent with the distribution of fault zones, with noticeable fluctuation in surrounding areas. The ACP at an altitude of 200 m gave a balance between sensitivity to seismic signals and minimal surface interference and proved to be optimal for EQ monitoring in Western China. The results offer a significant reference for remote sensing studies related to EQ monitoring and the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model, thereby advancing our understanding of pre-seismic atmospheric variations in Western China.
ISSN:2072-4292