A note on uniformly dominated sets of summing operators

Let Y be a Banach space that has no finite cotype and p a real number satisfying 1≤p<∞. We prove that a set ℳ⊂Πp(X,Y) is uniformly dominated if and only if there exists a constant C>0 such that, for every finite set {(xi,Ti):i=1,…,n}⊂X×ℳ, there is an operator T∈Πp(X,Y) satisfying πp(T)≤C and ‖...

Full description

Saved in:
Bibliographic Details
Main Authors: J. M. Delgado, C. Piñeiro
Format: Article
Language:English
Published: Wiley 2002-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171202007688
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832553483526471680
author J. M. Delgado
C. Piñeiro
author_facet J. M. Delgado
C. Piñeiro
author_sort J. M. Delgado
collection DOAJ
description Let Y be a Banach space that has no finite cotype and p a real number satisfying 1≤p<∞. We prove that a set ℳ⊂Πp(X,Y) is uniformly dominated if and only if there exists a constant C>0 such that, for every finite set {(xi,Ti):i=1,…,n}⊂X×ℳ, there is an operator T∈Πp(X,Y) satisfying πp(T)≤C and ‖Tixi‖≤‖Txi‖ for i=1,…,n.
format Article
id doaj-art-9136cf93a1134c90995c275cf119774b
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2002-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-9136cf93a1134c90995c275cf119774b2025-02-03T05:53:58ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252002-01-0129530731210.1155/S0161171202007688A note on uniformly dominated sets of summing operatorsJ. M. Delgado0C. Piñeiro1Departamento de Matemáticas, Escuela Politécnica Superior, Universidad de Huelva, La Rábida 21819, Huelva, SpainDepartamento de Matemáticas, Escuela Politécnica Superior, Universidad de Huelva, La Rábida 21819, Huelva, SpainLet Y be a Banach space that has no finite cotype and p a real number satisfying 1≤p<∞. We prove that a set ℳ⊂Πp(X,Y) is uniformly dominated if and only if there exists a constant C>0 such that, for every finite set {(xi,Ti):i=1,…,n}⊂X×ℳ, there is an operator T∈Πp(X,Y) satisfying πp(T)≤C and ‖Tixi‖≤‖Txi‖ for i=1,…,n.http://dx.doi.org/10.1155/S0161171202007688
spellingShingle J. M. Delgado
C. Piñeiro
A note on uniformly dominated sets of summing operators
International Journal of Mathematics and Mathematical Sciences
title A note on uniformly dominated sets of summing operators
title_full A note on uniformly dominated sets of summing operators
title_fullStr A note on uniformly dominated sets of summing operators
title_full_unstemmed A note on uniformly dominated sets of summing operators
title_short A note on uniformly dominated sets of summing operators
title_sort note on uniformly dominated sets of summing operators
url http://dx.doi.org/10.1155/S0161171202007688
work_keys_str_mv AT jmdelgado anoteonuniformlydominatedsetsofsummingoperators
AT cpineiro anoteonuniformlydominatedsetsofsummingoperators
AT jmdelgado noteonuniformlydominatedsetsofsummingoperators
AT cpineiro noteonuniformlydominatedsetsofsummingoperators