Maximal exponent of the Lorentz cones

We show that the maximal exponent (i.e., the minimum number of iterations required for a primitive map to become strictly positive) of the $n$-dimensional Lorentz cone is equal to $n$. As a byproduct, we show that the optimal exponent in the quantum Wielandt inequality for qubit channels is equal to...

Full description

Saved in:
Bibliographic Details
Main Authors: Aubrun, Guillaume, Bai, Jing
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.649/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206167819780096
author Aubrun, Guillaume
Bai, Jing
author_facet Aubrun, Guillaume
Bai, Jing
author_sort Aubrun, Guillaume
collection DOAJ
description We show that the maximal exponent (i.e., the minimum number of iterations required for a primitive map to become strictly positive) of the $n$-dimensional Lorentz cone is equal to $n$. As a byproduct, we show that the optimal exponent in the quantum Wielandt inequality for qubit channels is equal to $3$.
format Article
id doaj-art-90f356423567435a9a78c47efc1aef6c
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-90f356423567435a9a78c47efc1aef6c2025-02-07T11:23:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G111379138810.5802/crmath.64910.5802/crmath.649Maximal exponent of the Lorentz conesAubrun, Guillaume0Bai, Jing1Institut Camille Jordan, Université Claude Bernard Lyon 1, CNRS, INRIA, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, FranceInstitut Camille Jordan, Université Claude Bernard Lyon 1, CNRS, INRIA, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France; School of Mathematics, Harbin Institute of Technology, 92 West Dazhi Street, Nangang District, 150001 Harbin, ChinaWe show that the maximal exponent (i.e., the minimum number of iterations required for a primitive map to become strictly positive) of the $n$-dimensional Lorentz cone is equal to $n$. As a byproduct, we show that the optimal exponent in the quantum Wielandt inequality for qubit channels is equal to $3$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.649/Lorentz coneMaximal exponentQuantum Wielandt inequality
spellingShingle Aubrun, Guillaume
Bai, Jing
Maximal exponent of the Lorentz cones
Comptes Rendus. Mathématique
Lorentz cone
Maximal exponent
Quantum Wielandt inequality
title Maximal exponent of the Lorentz cones
title_full Maximal exponent of the Lorentz cones
title_fullStr Maximal exponent of the Lorentz cones
title_full_unstemmed Maximal exponent of the Lorentz cones
title_short Maximal exponent of the Lorentz cones
title_sort maximal exponent of the lorentz cones
topic Lorentz cone
Maximal exponent
Quantum Wielandt inequality
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.649/
work_keys_str_mv AT aubrunguillaume maximalexponentofthelorentzcones
AT baijing maximalexponentofthelorentzcones