Comparative analysis of stomatal pore instance segmentation: Mask R-CNN vs. YOLOv8 on Phenomics Stomatal dataset

This study conducts a rigorous comparative analysis between two cutting-edge instance segmentation methods, Mask R-CNN and YOLOv8, focusing on stomata pore analysis. A novel dataset specifically tailored for stomata pore instance segmentation, named PhenomicsStomata, was introduced. This dataset pos...

Full description

Saved in:
Bibliographic Details
Main Authors: Thanh Tuan Thai, Ki-Bon Ku, Anh Tuan Le, San Su Min Oh, Ngo Hoang Phan, In-Jung Kim, Yong Suk Chung
Format: Article
Language:English
Published: Frontiers Media S.A. 2024-12-01
Series:Frontiers in Plant Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fpls.2024.1414849/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study conducts a rigorous comparative analysis between two cutting-edge instance segmentation methods, Mask R-CNN and YOLOv8, focusing on stomata pore analysis. A novel dataset specifically tailored for stomata pore instance segmentation, named PhenomicsStomata, was introduced. This dataset posed challenges such as low resolution and image imperfections, prompting the application of advanced preprocessing techniques, including image enhancement using the Lucy-Richardson Algorithm. The models underwent comprehensive evaluation, considering accuracy, precision, and recall as key parameters. Notably, YOLOv8 demonstrated superior performance over Mask R-CNN, particularly in accurately calculating stomata pore dimensions. Beyond this comparative study, the implications of our findings extend across diverse biological research, providing a robust foundation for advancing our understanding of plant physiology. Furthermore, the preprocessing enhancements offer valuable insights for refining image analysis techniques, showcasing the potential for broader applications in scientific domains. This research marks a significant stride in unraveling the complexities of plant structures, offering both theoretical insights and practical applications in scientific research.
ISSN:1664-462X