The Design and Control of a Proprioceptive Modular Actuator for Tendon-Driven Robots
Tendon-driven robots offer advantages in terms of their compliance, lightweight design, and remote actuation, making them ideal for applications requiring dexterity and safety. However, existing tendon-driven actuators often suffer from low integration and inaccurate proprioceptive sensing due to th...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Actuators |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-0825/14/6/278 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Tendon-driven robots offer advantages in terms of their compliance, lightweight design, and remote actuation, making them ideal for applications requiring dexterity and safety. However, existing tendon-driven actuators often suffer from low integration and inaccurate proprioceptive sensing due to their complex pulley-based tension sensors and bulky angle sensors. This paper presents the design and control of a compact and proprioceptive modular tendon-driven actuator. The actuator features a simplified single-pulley tension sensing mechanism and a novel maze-slot fixation method, minimizing friction and maximizing the structural integrity. A 3D Hall effect sensor is employed for accurate estimation of the tendon length with minimal space usage. A feedforward PID controller and a model-based tendon length observer are proposed to enhance the dynamic performance and sensing accuracy. Bench tests demonstrate that the actuator achieves a high power density (0.441 W/g), accurate closed-loop tension control, and reliable tendon length estimations. The proposed design provides a practical and high-performance solution for tendon-driven robots, enabling more agile, compact, and robust robotic systems. |
|---|---|
| ISSN: | 2076-0825 |