Adversarial Sample Generation Method Based on Frequency Domain Transformation and Channel Awareness
In OFDM wireless communication systems, low-resolution channel characteristics and noise interference pose significant challenges to accurate channel estimation. To solve these problems, we propose a super-resolution denoising residual network (SDRNet), which combines the advantages of the super-res...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/12/3779 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In OFDM wireless communication systems, low-resolution channel characteristics and noise interference pose significant challenges to accurate channel estimation. To solve these problems, we propose a super-resolution denoising residual network (SDRNet), which combines the advantages of the super-resolution convolutional neural network (SRCNN) and the denoising convolutional neural network (DnCNN) to construct a pilot-based OFDM signal model, train SDRNet using OFDM pilot data containing Gaussian noise, and optimize its feature enhancement ability in frequency-selective fading channels. To further explore the role of channel estimation in communication security, we propose a frequency-domain adversarial attack method based on SDRNet output. This method first converts the time-domain signal to the frequency domain by using the Fourier transform and then applies Gaussian noise and selective masking. By integrating the channel gradient information, the adversarial perturbation we generated significantly improves the attack success rate compared with the non-channel awareness method. The experimental results show that SDRNet is superior to traditional algorithms (such as the least square method, minimum mean square error estimation, etc.) in both mean square error and bit error rate. Furthermore, the adversarial samples optimized through channel awareness frequency-domain masking exhibit stronger attack performance, confirming that accurate channel estimation can not only enhance communication reliability but also provide key guidance for adversarial perturbation. The experimental results show that under the same noise conditions, the MSE of SDRNet is significantly lower than that of LS and MMSE. The bit error rate is lower than 0.01 when the signal-to-noise ratio is 10 dB, which is significantly better than the traditional algorithm. The attack success rate of the proposed adversarial attack method reached 79.9%, which was 16.3% higher than that of the non-channel aware method, verifying the key role of accurate channel estimation in enhancing the effectiveness of the attack. |
|---|---|
| ISSN: | 1424-8220 |