Prophetic Granger Causality to infer gene regulatory networks.

We introduce a novel method called Prophetic Granger Causality (PGC) for inferring gene regulatory networks (GRNs) from protein-level time series data. The method uses an L1-penalized regression adaptation of Granger Causality to model protein levels as a function of time, stimuli, and other perturb...

Full description

Saved in:
Bibliographic Details
Main Authors: Daniel E Carlin, Evan O Paull, Kiley Graim, Christopher K Wong, Adrian Bivol, Peter Ryabinin, Kyle Ellrott, Artem Sokolov, Joshua M Stuart
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0170340
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce a novel method called Prophetic Granger Causality (PGC) for inferring gene regulatory networks (GRNs) from protein-level time series data. The method uses an L1-penalized regression adaptation of Granger Causality to model protein levels as a function of time, stimuli, and other perturbations. When combined with a data-independent network prior, the framework outperformed all other methods submitted to the HPN-DREAM 8 breast cancer network inference challenge. Our investigations reveal that PGC provides complementary information to other approaches, raising the performance of ensemble learners, while on its own achieves moderate performance. Thus, PGC serves as a valuable new tool in the bioinformatics toolkit for analyzing temporal datasets. We investigate the general and cell-specific interactions predicted by our method and find several novel interactions, demonstrating the utility of the approach in charting new tumor wiring.
ISSN:1932-6203