ChromaFold predicts the 3D contact map from single-cell chromatin accessibility

Abstract Identifying cell-type-specific 3D chromatin interactions between regulatory elements can help decipher gene regulation and interpret disease-associated non-coding variants. However, achieving this resolution with current 3D genomics technologies is often infeasible given limited input cell...

Full description

Saved in:
Bibliographic Details
Main Authors: Vianne R. Gao, Rui Yang, Arnav Das, Renhe Luo, Hanzhi Luo, Dylan R. McNally, Ioannis Karagiannidis, Martin A. Rivas, Zhong-Min Wang, Darko Barisic, Alireza Karbalayghareh, Wilfred Wong, Yingqian A. Zhan, Christopher R. Chin, William S. Noble, Jeff A. Bilmes, Effie Apostolou, Michael G. Kharas, Wendy Béguelin, Aaron D. Viny, Danwei Huangfu, Alexander Y. Rudensky, Ari M. Melnick, Christina S. Leslie
Format: Article
Language:English
Published: Nature Portfolio 2024-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-53628-0
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832594634472161280
author Vianne R. Gao
Rui Yang
Arnav Das
Renhe Luo
Hanzhi Luo
Dylan R. McNally
Ioannis Karagiannidis
Martin A. Rivas
Zhong-Min Wang
Darko Barisic
Alireza Karbalayghareh
Wilfred Wong
Yingqian A. Zhan
Christopher R. Chin
William S. Noble
Jeff A. Bilmes
Effie Apostolou
Michael G. Kharas
Wendy Béguelin
Aaron D. Viny
Danwei Huangfu
Alexander Y. Rudensky
Ari M. Melnick
Christina S. Leslie
author_facet Vianne R. Gao
Rui Yang
Arnav Das
Renhe Luo
Hanzhi Luo
Dylan R. McNally
Ioannis Karagiannidis
Martin A. Rivas
Zhong-Min Wang
Darko Barisic
Alireza Karbalayghareh
Wilfred Wong
Yingqian A. Zhan
Christopher R. Chin
William S. Noble
Jeff A. Bilmes
Effie Apostolou
Michael G. Kharas
Wendy Béguelin
Aaron D. Viny
Danwei Huangfu
Alexander Y. Rudensky
Ari M. Melnick
Christina S. Leslie
author_sort Vianne R. Gao
collection DOAJ
description Abstract Identifying cell-type-specific 3D chromatin interactions between regulatory elements can help decipher gene regulation and interpret disease-associated non-coding variants. However, achieving this resolution with current 3D genomics technologies is often infeasible given limited input cell numbers. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps, including regulatory interactions, from single-cell ATAC sequencing (scATAC-seq) data alone. ChromaFold uses pseudobulk chromatin accessibility, co-accessibility across metacells, and a CTCF motif track as inputs and employs a lightweight architecture to train on standard GPUs. Trained on paired scATAC-seq and Hi-C data in human samples, ChromaFold accurately predicts the 3D contact map and peak-level interactions across diverse human and mouse test cell types. Compared to leading contact map prediction models that use ATAC-seq and CTCF ChIP-seq, ChromaFold achieves state-of-the-art performance using only scATAC-seq. Finally, fine-tuning ChromaFold on paired scATAC-seq and Hi-C in a complex tissue enables deconvolution of chromatin interactions across cell subpopulations.
format Article
id doaj-art-9058f5eecd4a4599ae65bc3feace0303
institution Kabale University
issn 2041-1723
language English
publishDate 2024-11-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-9058f5eecd4a4599ae65bc3feace03032025-01-19T12:29:35ZengNature PortfolioNature Communications2041-17232024-11-0115111510.1038/s41467-024-53628-0ChromaFold predicts the 3D contact map from single-cell chromatin accessibilityVianne R. Gao0Rui Yang1Arnav Das2Renhe Luo3Hanzhi Luo4Dylan R. McNally5Ioannis Karagiannidis6Martin A. Rivas7Zhong-Min Wang8Darko Barisic9Alireza Karbalayghareh10Wilfred Wong11Yingqian A. Zhan12Christopher R. Chin13William S. Noble14Jeff A. Bilmes15Effie Apostolou16Michael G. Kharas17Wendy Béguelin18Aaron D. Viny19Danwei Huangfu20Alexander Y. Rudensky21Ari M. Melnick22Christina S. Leslie23Computational and Systems Biology Program, Memorial Sloan Kettering Cancer CenterComputational and Systems Biology Program, Memorial Sloan Kettering Cancer CenterUniversity of WashingtonDevelopmental Biology Program, Sloan Kettering InstituteMolecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer CenterCaryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, Cornell UniversityDivision of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical CollegeDivision of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical CollegeHoward Hughes Medical Institute and Immunology Program, Sloan Kettering Institute and Ludwig Center at Memorial Sloan Kettering Cancer CenterDivision of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical CollegeComputational and Systems Biology Program, Memorial Sloan Kettering Cancer CenterComputational and Systems Biology Program, Memorial Sloan Kettering Cancer CenterCenter for Epigenetics Research, Memorial Sloan Kettering Cancer CenterDivision of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical CollegeUniversity of WashingtonUniversity of WashingtonJoan and Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell MedicineMolecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer CenterDivision of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical CollegeDepartments of Medicine, Division of Hematology & Oncology, and of Genetics & Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterDevelopmental Biology Program, Sloan Kettering InstituteHoward Hughes Medical Institute and Immunology Program, Sloan Kettering Institute and Ludwig Center at Memorial Sloan Kettering Cancer CenterDivision of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical CollegeComputational and Systems Biology Program, Memorial Sloan Kettering Cancer CenterAbstract Identifying cell-type-specific 3D chromatin interactions between regulatory elements can help decipher gene regulation and interpret disease-associated non-coding variants. However, achieving this resolution with current 3D genomics technologies is often infeasible given limited input cell numbers. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps, including regulatory interactions, from single-cell ATAC sequencing (scATAC-seq) data alone. ChromaFold uses pseudobulk chromatin accessibility, co-accessibility across metacells, and a CTCF motif track as inputs and employs a lightweight architecture to train on standard GPUs. Trained on paired scATAC-seq and Hi-C data in human samples, ChromaFold accurately predicts the 3D contact map and peak-level interactions across diverse human and mouse test cell types. Compared to leading contact map prediction models that use ATAC-seq and CTCF ChIP-seq, ChromaFold achieves state-of-the-art performance using only scATAC-seq. Finally, fine-tuning ChromaFold on paired scATAC-seq and Hi-C in a complex tissue enables deconvolution of chromatin interactions across cell subpopulations.https://doi.org/10.1038/s41467-024-53628-0
spellingShingle Vianne R. Gao
Rui Yang
Arnav Das
Renhe Luo
Hanzhi Luo
Dylan R. McNally
Ioannis Karagiannidis
Martin A. Rivas
Zhong-Min Wang
Darko Barisic
Alireza Karbalayghareh
Wilfred Wong
Yingqian A. Zhan
Christopher R. Chin
William S. Noble
Jeff A. Bilmes
Effie Apostolou
Michael G. Kharas
Wendy Béguelin
Aaron D. Viny
Danwei Huangfu
Alexander Y. Rudensky
Ari M. Melnick
Christina S. Leslie
ChromaFold predicts the 3D contact map from single-cell chromatin accessibility
Nature Communications
title ChromaFold predicts the 3D contact map from single-cell chromatin accessibility
title_full ChromaFold predicts the 3D contact map from single-cell chromatin accessibility
title_fullStr ChromaFold predicts the 3D contact map from single-cell chromatin accessibility
title_full_unstemmed ChromaFold predicts the 3D contact map from single-cell chromatin accessibility
title_short ChromaFold predicts the 3D contact map from single-cell chromatin accessibility
title_sort chromafold predicts the 3d contact map from single cell chromatin accessibility
url https://doi.org/10.1038/s41467-024-53628-0
work_keys_str_mv AT viannergao chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT ruiyang chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT arnavdas chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT renheluo chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT hanzhiluo chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT dylanrmcnally chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT ioanniskaragiannidis chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT martinarivas chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT zhongminwang chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT darkobarisic chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT alirezakarbalayghareh chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT wilfredwong chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT yingqianazhan chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT christopherrchin chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT williamsnoble chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT jeffabilmes chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT effieapostolou chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT michaelgkharas chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT wendybeguelin chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT aarondviny chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT danweihuangfu chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT alexanderyrudensky chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT arimmelnick chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT christinasleslie chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility