An Optimally Oriented Coherence Attribute Method and Its Application to Faults and Fracture Sets Detection in Carbonate Reservoirs
Faults and fracture sets in carbonate reservoirs are key geological features that govern hydrocarbon migration, accumulation, and wellbore stability. Their accurate detection is essential for structural interpretation, reservoir modeling, and drilling risk assessment. In this study, we propose an Op...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/13/7393 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Faults and fracture sets in carbonate reservoirs are key geological features that govern hydrocarbon migration, accumulation, and wellbore stability. Their accurate detection is essential for structural interpretation, reservoir modeling, and drilling risk assessment. In this study, we propose an Optimally Oriented Coherence Attribute (OOCA) method that integrates geological guidance with multi-frequency structural analysis to achieve enhanced sensitivity to faults and fractures across multiple scales. The method is guided by depositional and tectonic principles, constructing model traces along directions with maximal structural variation to amplify responses at geological boundaries. A distance-weighted computation and extended directional model trace strategy are adopted to further enhance the detection of fine-scale discontinuities, overcoming the limitations of traditional attributes in resolving subtle structural features. A Gabor-based multi-frequency fusion framework is employed to simultaneously preserve large-scale continuity and fine-scale detail. Validation using physical modeling and field seismic data confirms the method’s ability to enhance weak fault imaging. Compared to traditional attributes such as C3 coherence, curvature, and instantaneous phase, OOCA delivers significantly improved spatial resolution. In zones with documented lost circulation, the identified structural features align well with drilling observations, demonstrating strong geological adaptability and engineering relevance. Overall, the OOCA method offers a geologically consistent and computationally efficient solution for high-resolution fault interpretation and drilling risk prediction in structurally complex carbonate reservoirs. |
|---|---|
| ISSN: | 2076-3417 |