Multiresolution Wavelet Analysis of the Dynamics of a Cracked Rotor

We examine the dynamics of a healthy rotor and a rotor with a transverse crack, which opens and closes due to its self weight. Using discrete wavelet transform, we perform a multiresolution analysis of the measured vibration signal from each of these rotors. In particular, the measured vibration sig...

Full description

Saved in:
Bibliographic Details
Main Authors: Jerzy T. Sawicki, Asok K. Sen, Grzegorz Litak
Format: Article
Language:English
Published: Wiley 2009-01-01
Series:International Journal of Rotating Machinery
Online Access:http://dx.doi.org/10.1155/2009/265198
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We examine the dynamics of a healthy rotor and a rotor with a transverse crack, which opens and closes due to its self weight. Using discrete wavelet transform, we perform a multiresolution analysis of the measured vibration signal from each of these rotors. In particular, the measured vibration signal is decomposed into eight frequency bands, and the rms amplitude values of the healthy and cracked rotors are compared in the three lowest-frequency bands. The results indicate that the rms vibration amplitudes for the cracked rotor are larger than those of the healthy rotor in each of these three frequency bands. In the case of externally applied harmonic force excitation to the rotor, the rms values of the vibration amplitude of the cracked rotor are also found to be larger than those of a healthy rotor in the three lowest-frequency bands. Furthermore, the difference in the rms values between the healthy and cracked rotors in each of the three lowest-frequency bands is more pronounced in the presence of external excitation than that with no excitation. The obtained results suggest that the present multiresolution approach can be used effectively to detect the presence of a crack in a rotor.
ISSN:1023-621X
1542-3034