An Efficient Hybrid Numerical Scheme for Nonlinear Multiterm Caputo Time and Riesz Space Fractional-Order Diffusion Equations with Delay

In this paper, we construct and analyze a linearized finite difference/Galerkin–Legendre spectral scheme for the nonlinear multiterm Caputo time fractional-order reaction-diffusion equation with time delay and Riesz space fractional derivatives. The temporal fractional orders in the considered model...

Full description

Saved in:
Bibliographic Details
Main Authors: A. K. Omran, M. A. Zaky, A. S. Hendy, V. G. Pimenov
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2021/5922853
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832557115107966976
author A. K. Omran
M. A. Zaky
A. S. Hendy
V. G. Pimenov
author_facet A. K. Omran
M. A. Zaky
A. S. Hendy
V. G. Pimenov
author_sort A. K. Omran
collection DOAJ
description In this paper, we construct and analyze a linearized finite difference/Galerkin–Legendre spectral scheme for the nonlinear multiterm Caputo time fractional-order reaction-diffusion equation with time delay and Riesz space fractional derivatives. The temporal fractional orders in the considered model are taken as 0<β0<β1<β2<⋯<βm<1. The problem is first approximated by the L1 difference method on the temporal direction, and then, the Galerkin–Legendre spectral method is applied on the spatial discretization. Armed by an appropriate form of discrete fractional Grönwall inequalities, the stability and convergence of the fully discrete scheme are investigated by discrete energy estimates. We show that the proposed method is stable and has a convergent order of 2−βm in time and an exponential rate of convergence in space. We finally provide some numerical experiments to show the efficacy of the theoretical results.
format Article
id doaj-art-9017091cd1f946ec8939c71c7db10450
institution Kabale University
issn 2314-8888
language English
publishDate 2021-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-9017091cd1f946ec8939c71c7db104502025-02-03T05:43:40ZengWileyJournal of Function Spaces2314-88882021-01-01202110.1155/2021/5922853An Efficient Hybrid Numerical Scheme for Nonlinear Multiterm Caputo Time and Riesz Space Fractional-Order Diffusion Equations with DelayA. K. Omran0M. A. Zaky1A. S. Hendy2V. G. Pimenov3Department of Computational Mathematics and Computer ScienceDepartment of MathematicsDepartment of Computational Mathematics and Computer ScienceDepartment of Computational Mathematics and Computer ScienceIn this paper, we construct and analyze a linearized finite difference/Galerkin–Legendre spectral scheme for the nonlinear multiterm Caputo time fractional-order reaction-diffusion equation with time delay and Riesz space fractional derivatives. The temporal fractional orders in the considered model are taken as 0<β0<β1<β2<⋯<βm<1. The problem is first approximated by the L1 difference method on the temporal direction, and then, the Galerkin–Legendre spectral method is applied on the spatial discretization. Armed by an appropriate form of discrete fractional Grönwall inequalities, the stability and convergence of the fully discrete scheme are investigated by discrete energy estimates. We show that the proposed method is stable and has a convergent order of 2−βm in time and an exponential rate of convergence in space. We finally provide some numerical experiments to show the efficacy of the theoretical results.http://dx.doi.org/10.1155/2021/5922853
spellingShingle A. K. Omran
M. A. Zaky
A. S. Hendy
V. G. Pimenov
An Efficient Hybrid Numerical Scheme for Nonlinear Multiterm Caputo Time and Riesz Space Fractional-Order Diffusion Equations with Delay
Journal of Function Spaces
title An Efficient Hybrid Numerical Scheme for Nonlinear Multiterm Caputo Time and Riesz Space Fractional-Order Diffusion Equations with Delay
title_full An Efficient Hybrid Numerical Scheme for Nonlinear Multiterm Caputo Time and Riesz Space Fractional-Order Diffusion Equations with Delay
title_fullStr An Efficient Hybrid Numerical Scheme for Nonlinear Multiterm Caputo Time and Riesz Space Fractional-Order Diffusion Equations with Delay
title_full_unstemmed An Efficient Hybrid Numerical Scheme for Nonlinear Multiterm Caputo Time and Riesz Space Fractional-Order Diffusion Equations with Delay
title_short An Efficient Hybrid Numerical Scheme for Nonlinear Multiterm Caputo Time and Riesz Space Fractional-Order Diffusion Equations with Delay
title_sort efficient hybrid numerical scheme for nonlinear multiterm caputo time and riesz space fractional order diffusion equations with delay
url http://dx.doi.org/10.1155/2021/5922853
work_keys_str_mv AT akomran anefficienthybridnumericalschemefornonlinearmultitermcaputotimeandrieszspacefractionalorderdiffusionequationswithdelay
AT mazaky anefficienthybridnumericalschemefornonlinearmultitermcaputotimeandrieszspacefractionalorderdiffusionequationswithdelay
AT ashendy anefficienthybridnumericalschemefornonlinearmultitermcaputotimeandrieszspacefractionalorderdiffusionequationswithdelay
AT vgpimenov anefficienthybridnumericalschemefornonlinearmultitermcaputotimeandrieszspacefractionalorderdiffusionequationswithdelay
AT akomran efficienthybridnumericalschemefornonlinearmultitermcaputotimeandrieszspacefractionalorderdiffusionequationswithdelay
AT mazaky efficienthybridnumericalschemefornonlinearmultitermcaputotimeandrieszspacefractionalorderdiffusionequationswithdelay
AT ashendy efficienthybridnumericalschemefornonlinearmultitermcaputotimeandrieszspacefractionalorderdiffusionequationswithdelay
AT vgpimenov efficienthybridnumericalschemefornonlinearmultitermcaputotimeandrieszspacefractionalorderdiffusionequationswithdelay