Forecast-Aided Converter-Based Control for Optimal Microgrid Operation in Industrial Energy Management System (EMS): A Case Study in Vietnam
This study proposes a forecast-aided energy management strategy tailored for industrial microgrids operating in Vietnam’s tropical climate. The core novelty lies in the implementation of a converter-based EMS that enables bidirectional DC power exchange between multiple subsystems. To improve foreca...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/12/3202 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study proposes a forecast-aided energy management strategy tailored for industrial microgrids operating in Vietnam’s tropical climate. The core novelty lies in the implementation of a converter-based EMS that enables bidirectional DC power exchange between multiple subsystems. To improve forecast accuracy, an artificial neural network (ANN) is used to model the relationship between electric load and localized meteorological features, including temperature, dew point, humidity, and wind speed. The forecasted load data is then used to optimize charge/discharge schedules for energy storage systems (ESS) using a Particle Swarm Optimization (PSO) algorithm. The strategy is validated using real-site data from a Vietnamese industrial complex, where the proposed method demonstrates enhanced load prediction accuracy, cost-effective ESS operation, and multi-microgrid flexibility under weather variability. This integrated forecasting and control approach offers a scalable and climate-adaptive solution for EMS in emerging industrial regions. |
|---|---|
| ISSN: | 1996-1073 |