Maritime Autonomous Surface Ships: Architecture for Autonomous Navigation Systems

The development of Maritime Autonomous Surface Ships (MASS) has seen significant advancements in recent years, yet there remains a lack of comprehensive studies that holistically address the architecture of autonomous navigation systems and explain the complexity of their individual elements. This p...

Full description

Saved in:
Bibliographic Details
Main Authors: Anas S. Alamoush, Aykut I. Ölçer
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/1/122
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of Maritime Autonomous Surface Ships (MASS) has seen significant advancements in recent years, yet there remains a lack of comprehensive studies that holistically address the architecture of autonomous navigation systems and explain the complexity of their individual elements. This paper aims to bridge this gap by conducting a literature review that consolidates key research in the field and presents a detailed architecture of autonomous navigation systems. The results of this study identify several major clusters essential to MASS navigation architecture, including (1) autonomous navigation architecture, (2) decision-making and action-taking system, (3) situational awareness and associated technologies, (4) sensor fusion technology, (5) collision avoidance subsystems, (6) motion control and path following, and (7) mooring and unmooring. Each cluster is further dissected into sub-clusters, highlighting the intricate and interdependent nature of the components that facilitate autonomous navigation. The implications of this study are vital for multiple stakeholders. Ship captains and seafarers must be prepared for new navigation technologies, while managers and practitioners can use this architecture to better understand and implement these systems. Researchers will find a foundation for future investigations, particularly in filling knowledge gaps related to autonomous ship operations. This study makes a substantial contribution by filling a critical gap in the maritime literature, offering a detailed explanation of the elements within autonomous navigation systems.
ISSN:2077-1312