Nonresonance conditions for fourth order nonlinear boundary value problems
This paper is devoted to the study of the problemu(4)=f(t,u,u′,u″,u‴),u(0)=u(2π), u′(0)=u′(2π), u″(0)=u″(2π), u‴(0)=u‴(2π).We assume that f can be written under the formf(t,u,u′,u″,u‴)=f2(t,u,u′,u″,u‴)u″+f1(t,u,u′,u″,u‴)u′+f0(t,u,u′,u″,u‴)u+r(t,u,u′,u″,u‴)where r is a bounded function. We obta...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1994-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171294001031 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832566968573493248 |
---|---|
author | C. De Coster C. Fabry F. Munyamarere |
author_facet | C. De Coster C. Fabry F. Munyamarere |
author_sort | C. De Coster |
collection | DOAJ |
description | This paper is devoted to the study of the problemu(4)=f(t,u,u′,u″,u‴),u(0)=u(2π), u′(0)=u′(2π), u″(0)=u″(2π), u‴(0)=u‴(2π).We assume that f can be written under the formf(t,u,u′,u″,u‴)=f2(t,u,u′,u″,u‴)u″+f1(t,u,u′,u″,u‴)u′+f0(t,u,u′,u″,u‴)u+r(t,u,u′,u″,u‴)where r is a bounded function. We obtain existence conditions related to uniqueness conditions for the solution of the linear problemu(4)=au+bu″,u(0)=u(2π), u′(0)=u′(2π), u″(0)=u″(2π), u‴(0)=u‴(2π). |
format | Article |
id | doaj-art-8f76b46500e1454cab25a38795a22e4c |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 1994-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-8f76b46500e1454cab25a38795a22e4c2025-02-03T01:02:44ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251994-01-0117472574010.1155/S0161171294001031Nonresonance conditions for fourth order nonlinear boundary value problemsC. De Coster0C. Fabry1F. Munyamarere2Département de Mathématique, Université Catholique de Louvain, Chemin du Cyclotron 2, Louvain-la-Neuve B-1348, BelgiumDépartement de Mathématique, Université Catholique de Louvain, Chemin du Cyclotron 2, Louvain-la-Neuve B-1348, BelgiumDépartement de Mathématique, Université Catholique de Louvain, Chemin du Cyclotron 2, Louvain-la-Neuve B-1348, BelgiumThis paper is devoted to the study of the problemu(4)=f(t,u,u′,u″,u‴),u(0)=u(2π), u′(0)=u′(2π), u″(0)=u″(2π), u‴(0)=u‴(2π).We assume that f can be written under the formf(t,u,u′,u″,u‴)=f2(t,u,u′,u″,u‴)u″+f1(t,u,u′,u″,u‴)u′+f0(t,u,u′,u″,u‴)u+r(t,u,u′,u″,u‴)where r is a bounded function. We obtain existence conditions related to uniqueness conditions for the solution of the linear problemu(4)=au+bu″,u(0)=u(2π), u′(0)=u′(2π), u″(0)=u″(2π), u‴(0)=u‴(2π).http://dx.doi.org/10.1155/S0161171294001031nonresonance conditionsfourth order periodic BVPeigenlines. |
spellingShingle | C. De Coster C. Fabry F. Munyamarere Nonresonance conditions for fourth order nonlinear boundary value problems International Journal of Mathematics and Mathematical Sciences nonresonance conditions fourth order periodic BVP eigenlines. |
title | Nonresonance conditions for fourth order nonlinear boundary value problems |
title_full | Nonresonance conditions for fourth order nonlinear boundary value problems |
title_fullStr | Nonresonance conditions for fourth order nonlinear boundary value problems |
title_full_unstemmed | Nonresonance conditions for fourth order nonlinear boundary value problems |
title_short | Nonresonance conditions for fourth order nonlinear boundary value problems |
title_sort | nonresonance conditions for fourth order nonlinear boundary value problems |
topic | nonresonance conditions fourth order periodic BVP eigenlines. |
url | http://dx.doi.org/10.1155/S0161171294001031 |
work_keys_str_mv | AT cdecoster nonresonanceconditionsforfourthordernonlinearboundaryvalueproblems AT cfabry nonresonanceconditionsforfourthordernonlinearboundaryvalueproblems AT fmunyamarere nonresonanceconditionsforfourthordernonlinearboundaryvalueproblems |