Study of Antenna Superstrates Using Metamaterials for Directivity Enhancement Based on Fabry-Perot Resonant Cavity

Metamaterial superstrate is a significant method to obtain high directivity of one or a few antennas. In this paper, the characteristics of directivity enhancement using different metamaterial structures as antenna superstrates, such as electromagnetic bandgap (EBG) structures, frequency selective s...

Full description

Saved in:
Bibliographic Details
Main Authors: Haixia Liu, Shuo Lei, Xiaowei Shi, Long Li
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2013/209741
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metamaterial superstrate is a significant method to obtain high directivity of one or a few antennas. In this paper, the characteristics of directivity enhancement using different metamaterial structures as antenna superstrates, such as electromagnetic bandgap (EBG) structures, frequency selective surface (FSS), and left-handed material (LHM), are unifiedly studied by applying the theory of Fabry-Perot (F-P) resonant cavity. Focusing on the analysis of reflection phase and magnitude of superstrates in presently proposed designs, the essential reason for high-directivity antenna with different superstrates can be revealed in terms of the F-P resonant theory. Furthermore, a new design of the optimum reflection coefficient of superstrates for the maximum antenna directivity is proposed and validated. The optimum location of the LHM superstrate which is based on a refractive lens model can be determined by the F-P resonant distance.
ISSN:1687-5869
1687-5877