Deubiquitinase USP2a Sustains Interferons Antiviral Activity by Restricting Ubiquitination of Activated STAT1 in the Nucleus.
STAT1 is a critical transcription factor for regulating host antiviral defenses. STAT1 activation is largely dependent on phosphorylation at tyrosine 701 site of STAT1 (pY701-STAT1). Understanding how pY701-STAT1 is regulated by intracellular signaling remains a major challenge. Here we find that pY...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2016-07-01
|
| Series: | PLoS Pathogens |
| Online Access: | https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1005764&type=printable |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | STAT1 is a critical transcription factor for regulating host antiviral defenses. STAT1 activation is largely dependent on phosphorylation at tyrosine 701 site of STAT1 (pY701-STAT1). Understanding how pY701-STAT1 is regulated by intracellular signaling remains a major challenge. Here we find that pY701-STAT1 is the major form of ubiquitinated-STAT1 induced by interferons (IFNs). While total STAT1 remains relatively stable during the early stages of IFNs signaling, pY701-STAT1 can be rapidly downregulated by the ubiquitin-proteasome system. Moreover, ubiquitinated pY701-STAT1 is located predominantly in the nucleus, and inhibiting nuclear import of pY701-STAT1 significantly blocks ubiquitination and downregulation of pY701-STAT1. Furthermore, we reveal that the deubiquitinase USP2a translocates into the nucleus and binds to pY701-STAT1, and inhibits K48-linked ubiquitination and degradation of pY701-STAT1. Importantly, USP2a sustains IFNs-induced pY701-STAT1 levels, and enhances all three classes of IFNs- mediated signaling and antiviral activity. To our knowledge, this is the first identified deubiquitinase that targets activated pY701-STAT1. These findings uncover a positive mechanism by which IFNs execute efficient antiviral signaling and function, and may provide potential targets for improving IFNs-based antiviral therapy. |
|---|---|
| ISSN: | 1553-7366 1553-7374 |