Modeling the control of infectious diseases: Effects of TV and social media advertisements
Public health information through media plays an important role to curb the spread of various infectious diseases as most of the populations rely on what media projects to them. Social media and TV advertisements are important mediums to communicate people regarding the spread of any infectious dise...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2018-11-01
|
Series: | Mathematical Biosciences and Engineering |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/mbe.2018061 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832590065897832448 |
---|---|
author | Arvind Kumar Misra Rajanish Kumar Rai Yasuhiro Takeuchi |
author_facet | Arvind Kumar Misra Rajanish Kumar Rai Yasuhiro Takeuchi |
author_sort | Arvind Kumar Misra |
collection | DOAJ |
description | Public health information through media plays an important role to curb the spread of various infectious diseases as most of the populations rely on what media projects to them. Social media and TV advertisements are important mediums to communicate people regarding the spread of any infectious disease and methods to prevent its spread. Therefore, in this paper, we propose a mathematical model to see how TV and social media advertisements impact the dynamics of an infectious disease. The susceptible population is assumed vulnerable to infection as well as information (through TV and social media ads). It is also assumed that the growth rate of TV and social media ads is proportional to the number of infected individuals with decreasing function of aware individuals. The feasibility of possible equilibria and their stability properties are discussed. It is shown that the increment in growth rate of TV and social media ads destabilizes the system and periodic oscillations arise through Hopf-bifurcation. It is also found that the increase in dissemination rate of awareness among susceptible population also gives rise interesting dynamics about the stability of endemic equilibrium and causes stability switch. It is observed that TV and social media advertisements regarding the spread of infectious diseases have the potential to bring behavioral changes among the people and control the spread of diseases. Numerical simulations also support analytical findings. |
format | Article |
id | doaj-art-8f449a386fe44aab8680642db3a81fd1 |
institution | Kabale University |
issn | 1551-0018 |
language | English |
publishDate | 2018-11-01 |
publisher | AIMS Press |
record_format | Article |
series | Mathematical Biosciences and Engineering |
spelling | doaj-art-8f449a386fe44aab8680642db3a81fd12025-01-24T02:41:08ZengAIMS PressMathematical Biosciences and Engineering1551-00182018-11-011561315134310.3934/mbe.2018061Modeling the control of infectious diseases: Effects of TV and social media advertisementsArvind Kumar Misra0Rajanish Kumar Rai1Yasuhiro Takeuchi2Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi - 221005, IndiaDepartment of Mathematics, Institute of Science, Banaras Hindu University, Varanasi - 221005, IndiaCollege of Science and Engineering, Department of Physics and Mathematics, Aoyama Gakuin University, Kanagawa 252-5258, JapanPublic health information through media plays an important role to curb the spread of various infectious diseases as most of the populations rely on what media projects to them. Social media and TV advertisements are important mediums to communicate people regarding the spread of any infectious disease and methods to prevent its spread. Therefore, in this paper, we propose a mathematical model to see how TV and social media advertisements impact the dynamics of an infectious disease. The susceptible population is assumed vulnerable to infection as well as information (through TV and social media ads). It is also assumed that the growth rate of TV and social media ads is proportional to the number of infected individuals with decreasing function of aware individuals. The feasibility of possible equilibria and their stability properties are discussed. It is shown that the increment in growth rate of TV and social media ads destabilizes the system and periodic oscillations arise through Hopf-bifurcation. It is also found that the increase in dissemination rate of awareness among susceptible population also gives rise interesting dynamics about the stability of endemic equilibrium and causes stability switch. It is observed that TV and social media advertisements regarding the spread of infectious diseases have the potential to bring behavioral changes among the people and control the spread of diseases. Numerical simulations also support analytical findings.https://www.aimspress.com/article/doi/10.3934/mbe.2018061tv advertisementssocial mediaawarenessstabilityhopf-bifurcationstability switch |
spellingShingle | Arvind Kumar Misra Rajanish Kumar Rai Yasuhiro Takeuchi Modeling the control of infectious diseases: Effects of TV and social media advertisements Mathematical Biosciences and Engineering tv advertisements social media awareness stability hopf-bifurcation stability switch |
title | Modeling the control of infectious diseases: Effects of TV and social media advertisements |
title_full | Modeling the control of infectious diseases: Effects of TV and social media advertisements |
title_fullStr | Modeling the control of infectious diseases: Effects of TV and social media advertisements |
title_full_unstemmed | Modeling the control of infectious diseases: Effects of TV and social media advertisements |
title_short | Modeling the control of infectious diseases: Effects of TV and social media advertisements |
title_sort | modeling the control of infectious diseases effects of tv and social media advertisements |
topic | tv advertisements social media awareness stability hopf-bifurcation stability switch |
url | https://www.aimspress.com/article/doi/10.3934/mbe.2018061 |
work_keys_str_mv | AT arvindkumarmisra modelingthecontrolofinfectiousdiseaseseffectsoftvandsocialmediaadvertisements AT rajanishkumarrai modelingthecontrolofinfectiousdiseaseseffectsoftvandsocialmediaadvertisements AT yasuhirotakeuchi modelingthecontrolofinfectiousdiseaseseffectsoftvandsocialmediaadvertisements |