A Signal On-Off Ratiometric Molecularly Imprinted Electrochemical Sensor Based on MXene/PEI-MWCNTs Signal Amplification for the Detection of Diuron
Diuron (DU) is a widely used phenylurea herbicide designed to inhibit weed growth, but its high toxicity and prolonged half-life contribute significantly to environmental contamination. The majority of electrochemical (EC) sensors typically rely on a single response signal for the detection of DU, r...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Biosensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-6374/15/7/433 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Diuron (DU) is a widely used phenylurea herbicide designed to inhibit weed growth, but its high toxicity and prolonged half-life contribute significantly to environmental contamination. The majority of electrochemical (EC) sensors typically rely on a single response signal for the detection of DU, rendering them highly susceptible to interference from variable background noise in complex environments, thereby reducing the selectivity and robustness. By integrating molecularly imprinted polymer (MIP) with a ratiometric strategy, the aforementioned issues could be solved. In this study, a novel signal on-off ratiometric MIP-EC sensor was developed based on the MXene/PEI-MWCNTs nanocomposite for the detection of DU. Positively charged PEI-MWCNTs was used as an interlayer spacer and embedded into negatively charged MXene by a simple electrostatic self-assembly method. This effectively prevented the agglomeration of MXene and enhanced its electrocatalytic performance. The MIP was synthesized via electropolymerization with DU serving as the template molecule and the selectivity was enhanced by leveraging the gate effect of MIP. Subsequently, a ratiometric MIP-EC sensor was designed by introducing [Fe(CN)<sub>6</sub>]<sup>3−/4−</sup> into the electrolyte solution as an internal reference. Additionally, the current ratio signal (I<sub>DU</sub>/I<sub>[Fe(CN)6]</sub><sup>3−/4−</sup>) and DU concentration exhibited a good linear relationship within the range of 0.1 to 100 µM, with a limit of detection (LOD) of 30 nM (S/N = 3). In comparison with conventional single-signal MIP-EC sensing, the developed ratiometric MIP-EC sensing demonstrates superior reproducibility and accuracy. At the same time, the proposed sensor was successfully applied to the quantitative analysis of DU residues in soil samples, yielding highly satisfactory results. |
|---|---|
| ISSN: | 2079-6374 |